These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 28343716)
1. Transformation of zinc-concentrate in surface and subsurface environments: Implications for assessing zinc mobility/toxicity and choosing an optimal remediation strategy. Kwon MJ; Boyanov MI; Yang JS; Lee S; Hwang YH; Lee JY; Mishra B; Kemner KM Environ Pollut; 2017 Jul; 226():346-355. PubMed ID: 28343716 [TBL] [Abstract][Full Text] [Related]
2. Time-dependent changes of zinc speciation in four soils contaminated with zincite or sphalerite. Voegelin A; Jacquat O; Pfister S; Barmettler K; Scheinost AC; Kretzschmar R Environ Sci Technol; 2011 Jan; 45(1):255-61. PubMed ID: 21142002 [TBL] [Abstract][Full Text] [Related]
3. Zn speciation and fate in soils and sediments along the ground transportation route of Zn ore to a smelter. Kwon MJ; Boyanov MI; Mishra B; Kemner KM; Jeon SK; Hong JK; Lee S J Hazard Mater; 2022 Sep; 438():129422. PubMed ID: 35785740 [TBL] [Abstract][Full Text] [Related]
4. Speciation of Zn and Cu in Technosol and evaluation of a sequential extraction procedure using XAS, XRD and SEM-EDX analyses. Nevidomskaya DG; Minkina TM; Soldatov AV; Bauer TV; Shuvaeva VA; Zubavichus YV; Trigub AL; Mandzhieva SS; Dorovatovskii PV; Popov YV Environ Geochem Health; 2021 Jun; 43(6):2301-2315. PubMed ID: 32794112 [TBL] [Abstract][Full Text] [Related]
5. Changes in zinc speciation with mine tailings acidification in a semiarid weathering environment. Hayes SM; O'Day PA; Webb SM; Maier RM; Chorover J Environ Sci Technol; 2011 Sep; 45(17):7166-72. PubMed ID: 21761897 [TBL] [Abstract][Full Text] [Related]
6. Zinc speciation in a smelter-contaminated soil profile using bulk and microspectroscopic techniques. Roberts DR; Scheinost AC; Sparks DL Environ Sci Technol; 2002 Apr; 36(8):1742-50. PubMed ID: 11993872 [TBL] [Abstract][Full Text] [Related]
7. Remediation of zinc-contaminated soils by using the two-step washing with citric acid and water-soluble chitosan. Hu W; Niu Y; Zhu H; Dong K; Wang D; Liu F Chemosphere; 2021 Nov; 282():131092. PubMed ID: 34470156 [TBL] [Abstract][Full Text] [Related]
8. Arsenic speciation and bioaccessibility in arsenic-contaminated soils: sequential extraction and mineralogical investigation. Kim EJ; Yoo JC; Baek K Environ Pollut; 2014 Mar; 186():29-35. PubMed ID: 24361561 [TBL] [Abstract][Full Text] [Related]
9. Zn mobility and geochemistry in surface sulfide mining soils from SE Spain. Garcia G; Peñas JM; Manteca JI Environ Res; 2008 Mar; 106(3):333-9. PubMed ID: 17560565 [TBL] [Abstract][Full Text] [Related]
10. Effects of chemical speciation on the bioaccessibility of zinc in spiked and smelter-affected soils. Elikem E; Laird BD; Hamilton JG; Stewart KJ; Siciliano SD; Peak D Environ Toxicol Chem; 2019 Feb; 38(2):448-459. PubMed ID: 30525224 [TBL] [Abstract][Full Text] [Related]
11. Assessment of pilot-scale acid washing of soil contaminated with As, Zn and Ni using the BCR three-step sequential extraction. Ko I; Chang YY; Lee CH; Kim KW J Hazard Mater; 2005 Dec; 127(1-3):1-13. PubMed ID: 16122872 [TBL] [Abstract][Full Text] [Related]
12. Environmental hazard of cadmium, copper, lead and zinc in metal-contaminated soils remediated by sulfosuccinamate formulation. del Carmen Hernández-Soriano M; Peña A; Mingorance MD J Environ Monit; 2011 Oct; 13(10):2830-7. PubMed ID: 21860854 [TBL] [Abstract][Full Text] [Related]
13. Radical change of Zn speciation in pig slurry amended soil: Key role of nano-sized sulfide particles. Formentini TA; Legros S; Fernandes CVS; Pinheiro A; Le Bars M; Levard C; Mallmann FJK; da Veiga M; Doelsch E Environ Pollut; 2017 Mar; 222():495-503. PubMed ID: 28063709 [TBL] [Abstract][Full Text] [Related]
14. Determining the speciation of Zn in soils around the sediment ponds of chemical plants by XRD and XAFS spectroscopy and sequential extraction. Minkina T; Nevidomskaya D; Bauer T; Shuvaeva V; Soldatov A; Mandzhieva S; Zubavichus Y; Trigub A Sci Total Environ; 2018 Sep; 634():1165-1173. PubMed ID: 29660873 [TBL] [Abstract][Full Text] [Related]
15. Metal(loid)s behaviour in soils amended with nano zero-valent iron as a function of pH and time. Vítková M; Rákosová S; Michálková Z; Komárek M J Environ Manage; 2017 Jan; 186(Pt 2):268-276. PubMed ID: 27292579 [TBL] [Abstract][Full Text] [Related]
16. Abandoned PbZn mining wastes and their mobility as proxy to toxicity: A review. Gutiérrez M; Mickus K; Camacho LM Sci Total Environ; 2016 Sep; 565():392-400. PubMed ID: 27179321 [TBL] [Abstract][Full Text] [Related]
17. Effect of biochar from peanut shell on speciation and availability of lead and zinc in an acidic paddy soil. Chao X; Qian X; Han-Hua Z; Shuai W; Qi-Hong Z; Dao-You H; Yang-Zhu Z Ecotoxicol Environ Saf; 2018 Nov; 164():554-561. PubMed ID: 30149354 [TBL] [Abstract][Full Text] [Related]
18. Speciation and reactivity of lead and zinc in heavily and poorly contaminated soils: Stable isotope dilution, chemical extraction and model views. Ren ZL; Sivry Y; Tharaud M; Cordier L; Li Y; Dai J; Benedetti MF Environ Pollut; 2017 Jun; 225():654-662. PubMed ID: 28392241 [TBL] [Abstract][Full Text] [Related]
19. Changes in heavy metal bioavailability and speciation from a Pb-Zn mining soil amended with biochars from co-pyrolysis of rice straw and swine manure. Meng J; Tao M; Wang L; Liu X; Xu J Sci Total Environ; 2018 Aug; 633():300-307. PubMed ID: 29574374 [TBL] [Abstract][Full Text] [Related]
20. Speciation of Zn and Cd in sierozem soil, northwest China: bulk EXAFS and micro synchrotron X-ray fluorescence. Zhao X; Takahashi Y; Wu W; Liu C; Fan Q Environ Sci Process Impacts; 2023 May; 25(5):954-963. PubMed ID: 37052246 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]