These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 28343873)

  • 1. Transport of bacteria in porous media and its enhancement by surfactants for bioaugmentation: A review.
    Zhong H; Liu G; Jiang Y; Yang J; Liu Y; Yang X; Liu Z; Zeng G
    Biotechnol Adv; 2017 Jul; 35(4):490-504. PubMed ID: 28343873
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancing bacterial transport with saponins in saturated porous media for the bioaugmentation of groundwater: visual investigation and surface interactions.
    Zhao Y; Qu D; Zhou R; Yang X; Kong W; Ren H
    Environ Sci Pollut Res Int; 2018 Sep; 25(26):26539-26549. PubMed ID: 29992413
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bacterial deposition in porous medium as impacted by solution chemistry.
    Chen G; Zhu H
    Res Microbiol; 2004; 155(6):467-74. PubMed ID: 15249064
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of low-concentration rhamnolipid on transport of Pseudomonas aeruginosa ATCC 9027 in an ideal porous medium with hydrophilic or hydrophobic surfaces.
    Zhong H; Liu G; Jiang Y; Brusseau ML; Liu Z; Liu Y; Zeng G
    Colloids Surf B Biointerfaces; 2016 Mar; 139():244-8. PubMed ID: 26722821
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Continuum-based models and concepts for the transport of nanoparticles in saturated porous media: A state-of-the-science review.
    Babakhani P; Bridge J; Doong RA; Phenrat T
    Adv Colloid Interface Sci; 2017 Aug; 246():75-104. PubMed ID: 28641812
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A multiple-relaxation-time lattice-boltzmann model for bacterial chemotaxis: effects of initial concentration, diffusion, and hydrodynamic dispersion on traveling bacterial bands.
    Yan Z; Hilpert M
    Bull Math Biol; 2014 Oct; 76(10):2449-75. PubMed ID: 25223537
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Altered transport of lindane caused by the retention of natural particles in saturated porous media.
    Ngueleu SK; Grathwohl P; Cirpka OA
    J Contam Hydrol; 2014 Jul; 162-163():47-63. PubMed ID: 24859485
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aggregation and transport of nano-TiO2 in saturated porous media: effects of pH, surfactants and flow velocity.
    Godinez IG; Darnault CJ
    Water Res; 2011 Jan; 45(2):839-51. PubMed ID: 20947120
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for biosurfactant-induced flow in corners and bacterial spreading in unsaturated porous media.
    Yang JQ; Sanfilippo JE; Abbasi N; Gitai Z; Bassler BL; Stone HA
    Proc Natl Acad Sci U S A; 2021 Sep; 118(38):. PubMed ID: 34531326
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling Transport of Chemotactic Bacteria in Granular Media with Distributed Contaminant Sources.
    Adadevoh JST; Ostvar S; Wood B; Ford RM
    Environ Sci Technol; 2017 Dec; 51(24):14192-14198. PubMed ID: 29164871
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of nonionic surfactants on bacterial transport through porous media.
    Brown DG; Jaffé PR
    Environ Sci Technol; 2001 Oct; 35(19):3877-83. PubMed ID: 11642447
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Straining of polyelectrolyte-stabilized nanoscale zero valent iron particles during transport through granular porous media.
    Raychoudhury T; Tufenkji N; Ghoshal S
    Water Res; 2014 Mar; 50():80-9. PubMed ID: 24361705
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Review on subsurface colloids and colloid-associated contaminant transport in saturated porous media.
    Kanti Sen T; Khilar KC
    Adv Colloid Interface Sci; 2006 Feb; 119(2-3):71-96. PubMed ID: 16324681
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrodynamic dispersion within porous biofilms.
    Davit Y; Byrne H; Osborne J; Pitt-Francis J; Gavaghan D; Quintard M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012718. PubMed ID: 23410370
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced transverse migration of bacteria by chemotaxis in a porous T-sensor.
    Long T; Ford RM
    Environ Sci Technol; 2009 Mar; 43(5):1546-52. PubMed ID: 19350933
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Retention and transport of an anaerobic trichloroethene dechlorinating microbial culture in anaerobic porous media.
    Zhang H; Ulrich AC; Liu Y
    Colloids Surf B Biointerfaces; 2015 Jun; 130():110-8. PubMed ID: 25935560
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Straining phenomena in bacteria transport through natural porous media.
    Díaz J; Rendueles M; Díaz M
    Environ Sci Pollut Res Int; 2010 Feb; 17(2):400-9. PubMed ID: 19455361
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of surfactants on graphene oxide nanoparticles transport in saturated porous media.
    Fan W; Jiang X; Lu Y; Huo M; Lin S; Geng Z
    J Environ Sci (China); 2015 Sep; 35():12-19. PubMed ID: 26354687
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transport of Colloidal Particles in Microscopic Porous Medium Analogues with Surface Charge Heterogeneity: Experiments and the Fundamental Role of Single-Bead Deposition.
    Guo Y; Lou J; Cho JK; Tilton N; Chun J; Um W; Yin X; Neeves KB; Wu N
    Environ Sci Technol; 2020 Nov; 54(21):13651-13660. PubMed ID: 33079526
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pore-network modeling of biofilm evolution in porous media.
    Ezeuko CC; Sen A; Grigoryan A; Gates ID
    Biotechnol Bioeng; 2011 Oct; 108(10):2413-23. PubMed ID: 21520022
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.