BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 28344012)

  • 1. Signaling pathways involved in metal-based nanomaterial toxicity towards aquatic organisms.
    Châtel A; Mouneyrac C
    Comp Biochem Physiol C Toxicol Pharmacol; 2017 Jun; 196():61-70. PubMed ID: 28344012
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ecotoxicological impact of engineered nanomaterials in bivalve molluscs: An overview.
    Rocha TL; Gomes T; Sousa VS; Mestre NC; Bebianno MJ
    Mar Environ Res; 2015 Oct; 111():74-88. PubMed ID: 26152602
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alteration in the expression of antioxidant and detoxification genes in Chironomus riparius exposed to zinc oxide nanoparticles.
    Gopalakrishnan Nair PM; Chung IM
    Comp Biochem Physiol B Biochem Mol Biol; 2015 Dec; 190():1-7. PubMed ID: 26278375
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Significance of adverse outcome pathways in biomarker-based environmental risk assessment in aquatic organisms.
    Lee JW; Won EJ; Raisuddin S; Lee JS
    J Environ Sci (China); 2015 Sep; 35():115-127. PubMed ID: 26354700
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Manufactured nanoparticles in the aquatic environment-biochemical responses on freshwater organisms: A critical overview.
    Vale G; Mehennaoui K; Cambier S; Libralato G; Jomini S; Domingos RF
    Aquat Toxicol; 2016 Jan; 170():162-174. PubMed ID: 26655660
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Review of ecotoxicity and mechanism of engineered nanoparticles to aquatic organisms].
    Wang ZY; Zhao J; Li N; Li FM; Xing BS
    Huan Jing Ke Xue; 2010 Jun; 31(6):1409-18. PubMed ID: 20698250
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Particles in the oceans: Implication for a safe marine environment.
    Blasco J; Corsi I; Matranga V
    Mar Environ Res; 2015 Oct; 111():1-4. PubMed ID: 26515473
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pesticidal copper (I) oxide: environmental fate and aquatic toxicity.
    Kiaune L; Singhasemanon N
    Rev Environ Contam Toxicol; 2011; 213():1-26. PubMed ID: 21541846
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Silver nanoparticle-induced oxidative stress, genotoxicity and apoptosis in cultured cells and animal tissues.
    Kim S; Ryu DY
    J Appl Toxicol; 2013 Feb; 33(2):78-89. PubMed ID: 22936301
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Omics tools: New challenges in aquatic nanotoxicology?
    Revel M; Châtel A; Mouneyrac C
    Aquat Toxicol; 2017 Dec; 193():72-85. PubMed ID: 29049925
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rescheduling the process of nanoparticle removal used for water mercury remediation can increase the risk to aquatic organism: evidence of innate immune functions modulation in European eel (Anguilla anguilla L.).
    Costa LC; Mohmood I; Trindade T; Saleem M; Duarte AC; Pereira E; Ahmad I
    Environ Sci Pollut Res Int; 2015 Dec; 22(23):18574-89. PubMed ID: 26396010
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimation of TiO₂ nanoparticle-induced genotoxicity persistence and possible chronic gastritis-induction in mice.
    Mohamed HR
    Food Chem Toxicol; 2015 Sep; 83():76-83. PubMed ID: 26072100
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Converging hazard assessment of gold nanoparticles to aquatic organisms.
    García-Cambero JP; Núñez García M; López GD; Herranz AL; Cuevas L; Pérez-Pastrana E; Cuadal JS; Castelltort MR; Calvo AC
    Chemosphere; 2013 Oct; 93(6):1194-200. PubMed ID: 23916211
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ecophysiological perspectives on engineered nanomaterial toxicity in fish and crustaceans.
    Callaghan NI; MacCormack TJ
    Comp Biochem Physiol C Toxicol Pharmacol; 2017 Mar; 193():30-41. PubMed ID: 28017784
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Toxicity of Nanoparticles to Organisms in Freshwater.
    Lekamge S; Ball AS; Shukla R; Nugegoda D
    Rev Environ Contam Toxicol; 2020; 248():1-80. PubMed ID: 30413977
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The impact of size on the fate and toxicity of nanoparticulate silver in aquatic systems.
    Angel BM; Batley GE; Jarolimek CV; Rogers NJ
    Chemosphere; 2013 Sep; 93(2):359-65. PubMed ID: 23732009
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of salinity on copper accumulation and its toxic effects in estuarine animals with differing osmoregulatory strategies.
    Lee JA; Marsden ID; Glover CN
    Aquat Toxicol; 2010 Aug; 99(1):65-72. PubMed ID: 20434226
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Review: Do engineered nanoparticles pose a significant threat to the aquatic environment?
    Scown TM; van Aerle R; Tyler CR
    Crit Rev Toxicol; 2010 Aug; 40(7):653-70. PubMed ID: 20662713
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ecotoxicity of engineered TiO2 nanoparticles to saltwater organisms: an overview.
    Minetto D; Libralato G; Volpi Ghirardini A
    Environ Int; 2014 May; 66():18-27. PubMed ID: 24509165
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoparticle-Biological Interactions in a Marine Benthic Foraminifer.
    Ciacci C; Grimmelpont MV; Corsi I; Bergami E; Curzi D; Burini D; Bouchet VMP; Ambrogini P; Gobbi P; Ujiié Y; Ishitani Y; Coccioni R; Bernhard JM; Frontalini F
    Sci Rep; 2019 Dec; 9(1):19441. PubMed ID: 31857637
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.