These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 28344012)

  • 41. Bioconcentration, bioaccumulation, and metabolism of pesticides in aquatic organisms.
    Katagi T
    Rev Environ Contam Toxicol; 2010; 204():1-132. PubMed ID: 19957234
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cytotoxicity in the age of nano: the role of fourth period transition metal oxide nanoparticle physicochemical properties.
    Chusuei CC; Wu CH; Mallavarapu S; Hou FY; Hsu CM; Winiarz JG; Aronstam RS; Huang YW
    Chem Biol Interact; 2013 Nov; 206(2):319-26. PubMed ID: 24120544
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effects of water chemistry on the dissolution of ZnO nanoparticles and their toxicity to Escherichia coli.
    Li M; Lin D; Zhu L
    Environ Pollut; 2013 Feb; 173():97-102. PubMed ID: 23202638
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Metal-based nanotoxicity and detoxification pathways in higher plants.
    Ma C; White JC; Dhankher OP; Xing B
    Environ Sci Technol; 2015 Jun; 49(12):7109-22. PubMed ID: 25974388
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Silver Nanoparticle-Directed Mast Cell Degranulation Is Mediated through Calcium and PI3K Signaling Independent of the High Affinity IgE Receptor.
    Alsaleh NB; Persaud I; Brown JM
    PLoS One; 2016; 11(12):e0167366. PubMed ID: 27907088
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cadmium-induced formation of sulphide and cadmium sulphide particles in the aquatic hyphomycete Heliscus lugdunensis.
    Dobritzsch D; Ganz P; Rother M; Ehrman J; Baumbach R; Miersch J
    J Trace Elem Med Biol; 2015; 31():92-7. PubMed ID: 26004898
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cytotoxicity of gold nanoparticles.
    Pan Y; Bartneck M; Jahnen-Dechent W
    Methods Enzymol; 2012; 509():225-42. PubMed ID: 22568908
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Epigenetic mechanisms in nanomaterial-induced toxicity.
    Shyamasundar S; Ng CT; Yung LY; Dheen ST; Bay BH
    Epigenomics; 2015; 7(3):395-411. PubMed ID: 26077428
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Differential Genomic Effects of Six Different TiO2 Nanomaterials on Human Liver HepG2 Cells.
    Thai SF; Wallace KA; Jones CP; Ren H; Grulke E; Castellon BT; Crooks J; Kitchin KT
    J Biochem Mol Toxicol; 2016 Jul; 30(7):331-41. PubMed ID: 26918567
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Proteome profiling reveals potential toxicity and detoxification pathways following exposure of BEAS-2B cells to engineered nanoparticle titanium dioxide.
    Ge Y; Bruno M; Wallace K; Winnik W; Prasad RY
    Proteomics; 2011 Jun; 11(12):2406-22. PubMed ID: 21595037
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Freshwater ecotoxicity characterisation factor for metal oxide nanoparticles: a case study on titanium dioxide nanoparticle.
    Salieri B; Righi S; Pasteris A; Olsen SI
    Sci Total Environ; 2015 Feb; 505():494-502. PubMed ID: 25461051
    [TBL] [Abstract][Full Text] [Related]  

  • 52. How to assess exposure of aquatic organisms to manufactured nanoparticles?
    Quik JT; Vonk JA; Hansen SF; Baun A; Van De Meent D
    Environ Int; 2011 Aug; 37(6):1068-77. PubMed ID: 21411153
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Relationships between exposure and dose in aquatic toxicity tests for organic chemicals.
    Mackay D; McCarty LS; Arnot JA
    Environ Toxicol Chem; 2014 Sep; 33(9):2038-46. PubMed ID: 24889496
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Pharmaceuticals in the environment: expected and unexpected effects on aquatic fauna.
    Fabbri E
    Ann N Y Acad Sci; 2015 Mar; 1340():20-8. PubMed ID: 25557669
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The potential exposure and hazards of copper nanoparticles: A review.
    Ameh T; Sayes CM
    Environ Toxicol Pharmacol; 2019 Oct; 71():103220. PubMed ID: 31306862
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Oxidative stress-mediated apoptosis and genotoxicity induced by silver nanoparticles in freshwater snail Lymnea luteola L.
    Ali D
    Biol Trace Elem Res; 2014 Dec; 162(1-3):333-41. PubMed ID: 25351851
    [TBL] [Abstract][Full Text] [Related]  

  • 57. TiO2 nanoparticles in the marine environment: impact on the toxicity of tributyltin to abalone (Haliotis diversicolor supertexta) embryos.
    Zhu X; Zhou J; Cai Z
    Environ Sci Technol; 2011 Apr; 45(8):3753-8. PubMed ID: 21413738
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Toxic effect of Cr(VI) in presence of n-TiO2 and n-Al2O3 particles towards freshwater microalgae.
    Dalai S; Pakrashi S; Bhuvaneshwari M; Iswarya V; Chandrasekaran N; Mukherjee A
    Aquat Toxicol; 2014 Jan; 146():28-37. PubMed ID: 24270667
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Toxicity of silver and gold nanoparticles on marine microalgae.
    Moreno-Garrido I; Pérez S; Blasco J
    Mar Environ Res; 2015 Oct; 111():60-73. PubMed ID: 26002248
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The two faces of DOC.
    Wood CM; Al-Reasi HA; Smith DS
    Aquat Toxicol; 2011 Oct; 105(3-4 Suppl):3-8. PubMed ID: 22099339
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.