These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 28344088)

  • 1. Development of a robust and validated 2D-QSPR model for sweetness potency of diverse functional organic molecules.
    Ojha PK; Roy K
    Food Chem Toxicol; 2018 Feb; 112():551-562. PubMed ID: 28344088
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of liposome/water partition coefficients predictive models for neutral and ionogenic organic chemicals.
    Lin S; Yang X; Liu H
    Ecotoxicol Environ Saf; 2019 Sep; 179():40-49. PubMed ID: 31026749
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative structure-property relationship for predicting chlorine demand by organic molecules.
    Luilo GB; Cabaniss SE
    Environ Sci Technol; 2010 Apr; 44(7):2503-8. PubMed ID: 20230049
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A simple QSPR model for the prediction of the adsorbability of organic compounds onto activated carbon cloth.
    Xu J; Zhu L; Fang D; Liu L; Bai Z; Wang L; Xu W
    SAR QSAR Environ Res; 2013 Jan; 24(1):47-59. PubMed ID: 23066906
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bond-based global and local (bond, group and bond-type) quadratic indices and their applications to computer-aided molecular design. 1. QSPR studies of diverse sets of organic chemicals.
    Marrero-Ponce Y; Torrens F; Alvarado YJ; Rotondo R
    J Comput Aided Mol Des; 2006; 20(10-11):685-701. PubMed ID: 17186417
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly diverse, massive organic data as explored by a composite QSPR strategy: an advanced study of boiling point.
    Ivanova AA; Ivanov AA; Oliferenko AA; Palyulin VA; Zefirov NS
    SAR QSAR Environ Res; 2005 Jun; 16(3):231-46. PubMed ID: 15804811
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimation of aqueous solubility of organic compounds with QSPR approach.
    Gao H; Shanmugasundaram V; Lee P
    Pharm Res; 2002 Apr; 19(4):497-503. PubMed ID: 12033386
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of Simple QSPR Models for the Prediction of the Heat of Decomposition of Organic Peroxides.
    Prana V; Rotureau P; André D; Fayet G; Adamo C
    Mol Inform; 2017 Oct; 36(10):. PubMed ID: 28402598
    [TBL] [Abstract][Full Text] [Related]  

  • 9. QSPR modelling of dielectric constants of π-conjugated organic compounds by means of the CORAL software.
    Achary PG
    SAR QSAR Environ Res; 2014; 25(6):507-26. PubMed ID: 24716837
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploring QSPR modeling for adsorption of hazardous synthetic organic chemicals (SOCs) by SWCNTs.
    Ghosh S; Ojha PK; Roy K
    Chemosphere; 2019 Aug; 228():545-555. PubMed ID: 31051358
    [TBL] [Abstract][Full Text] [Related]  

  • 11. QSPR model of Henry's law constant for a diverse set of organic chemicals based on genetic algorithm-radial basis function network approach.
    Modarresi H; Modarress H; Dearden JC
    Chemosphere; 2007 Feb; 66(11):2067-76. PubMed ID: 17113627
    [TBL] [Abstract][Full Text] [Related]  

  • 12. QSPR study of absorption maxima of organic dyes for dye-sensitized solar cells based on 3D descriptors.
    Xu J; Zhang H; Wang L; Liang G; Wang L; Shen X; Xu W
    Spectrochim Acta A Mol Biomol Spectrosc; 2010 Jul; 76(2):239-47. PubMed ID: 20381412
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting the bioconcentration factor through a conformation-independent QSPR study.
    Aranda JF; Bacelo DE; Leguizamón Aparicio MS; Ocsachoque MA; Castro EA; Duchowicz PR
    SAR QSAR Environ Res; 2017 Sep; 28(9):749-763. PubMed ID: 28965425
    [TBL] [Abstract][Full Text] [Related]  

  • 14. QSPR study of Setschenow constants of organic compounds using MLR, ANN, and SVM analyses.
    Xu J; Wang L; Wang L; Shen X; Xu W
    J Comput Chem; 2011 Nov; 32(15):3241-52. PubMed ID: 21837634
    [TBL] [Abstract][Full Text] [Related]  

  • 15. First report on chemometric modeling of hydrolysis half-lives of organic chemicals.
    Khan PM; Lombardo A; Benfenati E; Roy K
    Environ Sci Pollut Res Int; 2021 Jan; 28(2):1627-1642. PubMed ID: 32844343
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting aqueous solubility of environmentally relevant compounds from molecular features: a simple but highly effective four-dimensional model based on Project to Latent Structures.
    Xiao F; Gulliver JS; Simcik MF
    Water Res; 2013 Sep; 47(14):5362-70. PubMed ID: 23866150
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A QSPR treatment for the thermal stabilities of second-order NLO chromophore molecules.
    Xu J; Guo B; Chen B; Zhang Q
    J Mol Model; 2005 Dec; 12(1):65-75. PubMed ID: 16240094
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel QSPR model for prediction of lower flammability limits of organic compounds based on support vector machine.
    Pan Y; Jiang J; Wang R; Cao H; Cui Y
    J Hazard Mater; 2009 Sep; 168(2-3):962-9. PubMed ID: 19329246
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a model to predict partition coefficient of organic pollutants in cloud point extraction process.
    Shahmirani S; Farahani EV; Ghasemi J
    Ann Chim; 2006; 96(5-6):327-37. PubMed ID: 16856762
    [TBL] [Abstract][Full Text] [Related]  

  • 20. QSPR modelling for investigation of different properties of aminoglycoside-derived polymers using 2D descriptors.
    Khan PM; Roy K
    SAR QSAR Environ Res; 2021 Jul; 32(7):595-614. PubMed ID: 34148451
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.