These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

409 related articles for article (PubMed ID: 28344129)

  • 1. Role of microRNA in diabetic cardiomyopathy: From mechanism to intervention.
    Guo R; Nair S
    Biochim Biophys Acta Mol Basis Dis; 2017 Aug; 1863(8):2070-2077. PubMed ID: 28344129
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular mechanism of diabetic cardiomyopathy and modulation of microRNA function by synthetic oligonucleotides.
    Ghosh N; Katare R
    Cardiovasc Diabetol; 2018 Mar; 17(1):43. PubMed ID: 29566757
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of mineralocorticoid receptor activation in cardiac diastolic dysfunction.
    Jia G; Jia Y; Sowers JR
    Biochim Biophys Acta Mol Basis Dis; 2017 Aug; 1863(8):2012-2018. PubMed ID: 27989961
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sirt3 deficiency exacerbates diabetic cardiac dysfunction: Role of Foxo3A-Parkin-mediated mitophagy.
    Yu W; Gao B; Li N; Wang J; Qiu C; Zhang G; Liu M; Zhang R; Li C; Ji G; Zhang Y
    Biochim Biophys Acta Mol Basis Dis; 2017 Aug; 1863(8):1973-1983. PubMed ID: 27794418
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of microRNAs in heart failure.
    Wang H; Cai J
    Biochim Biophys Acta Mol Basis Dis; 2017 Aug; 1863(8):2019-2030. PubMed ID: 27916680
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MicroRNAs and long non-coding RNAs in the pathophysiological processes of diabetic cardiomyopathy: emerging biomarkers and potential therapeutics.
    Jakubik D; Fitas A; Eyileten C; Jarosz-Popek J; Nowak A; Czajka P; Wicik Z; Sourij H; Siller-Matula JM; De Rosa S; Postula M
    Cardiovasc Diabetol; 2021 Feb; 20(1):55. PubMed ID: 33639953
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-coding RNA involvement in the pathogenesis of diabetic cardiomyopathy.
    Zhang W; Xu W; Feng Y; Zhou X
    J Cell Mol Med; 2019 Sep; 23(9):5859-5867. PubMed ID: 31240820
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic and epigenetic regulation of arrhythmogenic cardiomyopathy.
    Mazurek S; Kim GH
    Biochim Biophys Acta Mol Basis Dis; 2017 Aug; 1863(8):2064-2069. PubMed ID: 28454914
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CircRNAs in diabetic cardiomyopathy.
    Wan H; Zhao S; Zeng Q; Tan Y; Zhang C; Liu L; Qu S
    Clin Chim Acta; 2021 Jun; 517():127-132. PubMed ID: 33711326
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Role of ERK1/2 in the Development of Diabetic Cardiomyopathy.
    Xu Z; Sun J; Tong Q; Lin Q; Qian L; Park Y; Zheng Y
    Int J Mol Sci; 2016 Dec; 17(12):. PubMed ID: 27941647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pathological Effects of Exosomes in Mediating Diabetic Cardiomyopathy.
    Salem ESB; Fan GC
    Adv Exp Med Biol; 2017; 998():113-138. PubMed ID: 28936736
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Emerging role of epigenetics and miRNA in diabetic cardiomyopathy.
    Asrih M; Steffens S
    Cardiovasc Pathol; 2013; 22(2):117-25. PubMed ID: 22951386
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Emerging Actors in Diabetic Cardiomyopathy: Heartbreaker Biomarkers or Therapeutic Targets?
    Palomer X; Pizarro-Delgado J; Vázquez-Carrera M
    Trends Pharmacol Sci; 2018 May; 39(5):452-467. PubMed ID: 29605388
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Upregulation of MG53 induces diabetic cardiomyopathy through transcriptional activation of peroxisome proliferation-activated receptor α.
    Liu F; Song R; Feng Y; Guo J; Chen Y; Zhang Y; Chen T; Wang Y; Huang Y; Li CY; Cao C; Zhang Y; Hu X; Xiao RP
    Circulation; 2015 Mar; 131(9):795-804. PubMed ID: 25637627
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The association of heart failure-related microRNAs with neurohormonal signaling.
    Chen YT; Wang J; Tong KS; Wong LL; Liew OW; Richards AM
    Biochim Biophys Acta Mol Basis Dis; 2017 Aug; 1863(8):2031-2040. PubMed ID: 28065846
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeting miRNA for Therapy of Juvenile and Adult Diabetic Cardiomyopathy.
    Nandi SS; Mishra PK
    Adv Exp Med Biol; 2018; 1056():47-59. PubMed ID: 29754174
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MicroRNAs: A Critical Regulator and a Promising Therapeutic and Diagnostic Molecule for Diabetic Cardiomyopathy.
    Mathur P; Rani V
    Curr Gene Ther; 2021; 21(4):313-326. PubMed ID: 33719971
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lipotoxicity in obesity and diabetes-related cardiac dysfunction.
    Zlobine I; Gopal K; Ussher JR
    Biochim Biophys Acta; 2016 Oct; 1861(10):1555-68. PubMed ID: 26899197
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MicroRNAs: potential therapeutic targets in diabetic complications of the cardiovascular and renal systems.
    Figueira MF; Monnerat-Cahli G; Medei E; Carvalho AB; Morales MM; Lamas ME; da Fonseca RN; Souza-Menezes J
    Acta Physiol (Oxf); 2014 Jul; 211(3):491-500. PubMed ID: 24837225
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An overview of the inflammatory signalling mechanisms in the myocardium underlying the development of diabetic cardiomyopathy.
    Frati G; Schirone L; Chimenti I; Yee D; Biondi-Zoccai G; Volpe M; Sciarretta S
    Cardiovasc Res; 2017 Mar; 113(4):378-388. PubMed ID: 28395009
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.