BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 28344573)

  • 1. Submarine Basaltic Glass Colonization by the Heterotrophic Fe(II)-Oxidizing and Siderophore-Producing Deep-Sea Bacterium
    Sudek LA; Wanger G; Templeton AS; Staudigel H; Tebo BM
    Front Microbiol; 2017; 8():363. PubMed ID: 28344573
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental Microbial Alteration and Fe Mobilization From Basaltic Rocks of the ICDP HSDP2 Drill Core, Hilo, Hawaii.
    Stranghoener M; Schippers A; Dultz S; Behrens H
    Front Microbiol; 2018; 9():1252. PubMed ID: 29963022
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural Iron (II) of Basaltic Glass as an Energy Source for Zetaproteobacteria in an Abyssal Plain Environment, Off the Mid Atlantic Ridge.
    Henri PA; Rommevaux-Jestin C; Lesongeur F; Mumford A; Emerson D; Godfroy A; Ménez B
    Front Microbiol; 2015; 6():1518. PubMed ID: 26834704
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potential for microbial oxidation of ferrous iron in basaltic glass.
    Xiong MY; Shelobolina ES; Roden EE
    Astrobiology; 2015 May; 15(5):331-40. PubMed ID: 25915449
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microbial colonization of basaltic glasses in hydrothermal organic-rich sediments at Guaymas Basin.
    Callac N; Rommevaux-Jestin C; Rouxel O; Lesongeur F; Liorzou C; Bollinger C; Ferrant A; Godfroy A
    Front Microbiol; 2013; 4():250. PubMed ID: 23986754
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Growth and Population Dynamics of the Anaerobic Fe(II)-Oxidizing and Nitrate-Reducing Enrichment Culture KS.
    Tominski C; Heyer H; Lösekann-Behrens T; Behrens S; Kappler A
    Appl Environ Microbiol; 2018 May; 84(9):. PubMed ID: 29500257
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Loihichelins A-F, a suite of amphiphilic siderophores produced by the marine bacterium Halomonas LOB-5.
    Homann VV; Sandy M; Tincu JA; Templeton AS; Tebo BM; Butler A
    J Nat Prod; 2009 May; 72(5):884-8. PubMed ID: 19320498
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genomics and Ecophysiology of Heterotrophic Nitrogen-Fixing Bacteria Isolated from Estuarine Surface Water.
    Bentzon-Tilia M; Severin I; Hansen LH; Riemann L
    mBio; 2015 Jul; 6(4):e00929. PubMed ID: 26152586
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alteration textures in terrestrial volcanic glass and the associated bacterial community.
    Cockell CS; Olsson-Francis K; Herrera A; Meunier A
    Geobiology; 2009 Jan; 7(1):50-65. PubMed ID: 19200146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Siderophore production by Pseudomonas stutzeri under aerobic and anaerobic conditions.
    Essén SA; Johnsson A; Bylund D; Pedersen K; Lundström US
    Appl Environ Microbiol; 2007 Sep; 73(18):5857-64. PubMed ID: 17675442
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magma mixing induced by particle settling.
    Renggli CJ; Wiesmaier S; De Campos CP; Hess KU; Dingwell DB
    Contrib Mineral Petrol; 2016; 171(11):96. PubMed ID: 31148845
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Archaeal Communities in Deep Terrestrial Subsurface Underneath the Deccan Traps, India.
    Dutta A; Sar P; Sarkar J; Dutta Gupta S; Gupta A; Bose H; Mukherjee A; Roy S
    Front Microbiol; 2019; 10():1362. PubMed ID: 31379755
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Iron Homeostasis in Bacillus subtilis Requires Siderophore Production and Biofilm Formation.
    Rizzi A; Roy S; Bellenger JP; Beauregard PB
    Appl Environ Microbiol; 2019 Feb; 85(3):. PubMed ID: 30446551
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of siderophores of Pseudomonas stutzeri.
    Zawadzka AM; Vandecasteele FP; Crawford RL; Paszczynski AJ
    Can J Microbiol; 2006 Dec; 52(12):1164-76. PubMed ID: 17473886
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of Geochemical Bio-Signatures in Mars-Like Basaltic Environments.
    Olsson-Francis K; Pearson VK; Steer ED; Schwenzer SP
    Front Microbiol; 2017; 8():1668. PubMed ID: 28943863
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bacterial diversity and successional patterns during biofilm formation on freshly exposed basalt surfaces at diffuse-flow deep-sea vents.
    Gulmann LK; Beaulieu SE; Shank TM; Ding K; Seyfried WE; Sievert SM
    Front Microbiol; 2015; 6():901. PubMed ID: 26441852
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Abundance and diversity of microbial life in ocean crust.
    Santelli CM; Orcutt BN; Banning E; Bach W; Moyer CL; Sogin ML; Staudigel H; Edwards KJ
    Nature; 2008 May; 453(7195):653-6. PubMed ID: 18509444
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitrogen Stimulates the Growth of Subsurface Basalt-associated Microorganisms at the Western Flank of the Mid-Atlantic Ridge.
    Zhang X; Fang J; Bach W; Edwards KJ; Orcutt BN; Wang F
    Front Microbiol; 2016; 7():633. PubMed ID: 27199959
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peeking under the Iron Curtain: Development of a Microcosm for Imaging the Colonization of Steel Surfaces by Mariprofundus sp. Strain DIS-1, an Oxygen-Tolerant Fe-Oxidizing Bacterium.
    Mumford AC; Adaktylou IJ; Emerson D
    Appl Environ Microbiol; 2016 Nov; 82(22):6799-6807. PubMed ID: 27637877
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biofilm adaptation to iron availability in the presence of biotite and consequences for chemical weathering.
    Grant MR; Tymon LS; Helms GL; Thomashow LS; Kent Keller C; Harsh JB
    Geobiology; 2016 Nov; 14(6):588-598. PubMed ID: 27384343
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.