These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 28344972)

  • 1. Parsimonious continuous time random walk models and kurtosis for diffusion in magnetic resonance of biological tissue.
    Ingo C; Sui Y; Chen Y; Parrish TB; Webb AG; Ronen I
    Front Phys; 2015 Mar; 3():. PubMed ID: 28344972
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New Insights into the Fractional Order Diffusion Equation Using Entropy and Kurtosis.
    Ingo C; Magin RL; Parrish TB
    Entropy (Basel); 2014 Nov; 16(11):5838-5852. PubMed ID: 28344436
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monte Carlo simulation of uncoupled continuous-time random walks yielding a stochastic solution of the space-time fractional diffusion equation.
    Fulger D; Scalas E; Germano G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Feb; 77(2 Pt 1):021122. PubMed ID: 18352002
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A concise continuous time random-walk diffusion model for characterization of non-exponential signal decay in magnetic resonance imaging.
    Yu Y; Liang Y
    Magn Reson Imaging; 2023 Nov; 103():84-91. PubMed ID: 37451520
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On random walks and entropy in diffusion-weighted magnetic resonance imaging studies of neural tissue.
    Ingo C; Magin RL; Colon-Perez L; Triplett W; Mareci TH
    Magn Reson Med; 2014 Feb; 71(2):617-27. PubMed ID: 23508765
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generalisation of continuous time random walk to anomalous diffusion MRI models with an age-related evaluation of human corpus callosum.
    Yang Q; Reutens DC; Vegh V
    Neuroimage; 2022 Apr; 250():118903. PubMed ID: 35033674
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of Anomalous Diffusion in Porous Biological Tissues Using Fractional Order Derivatives and Entropy.
    Magin RL; Ingo C; Colon-Perez L; Triplett W; Mareci TH
    Microporous Mesoporous Mater; 2013 Sep; 178():39-43. PubMed ID: 24072979
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Subordinated diffusion and continuous time random walk asymptotics.
    Dybiec B; Gudowska-Nowak E
    Chaos; 2010 Dec; 20(4):043129. PubMed ID: 21198099
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Classification of fractional order biomarkers for anomalous diffusion using q-space entropy.
    Magin RL; Ingo C; Triplett W; Colon-Perez L; Mareci TH
    Crit Rev Biomed Eng; 2014; 42(1):63-83. PubMed ID: 25271359
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Subdiffusion equation with fractional Caputo time derivative with respect to another function in modeling transition from ordinary subdiffusion to superdiffusion.
    Kosztołowicz T
    Phys Rev E; 2023 Jun; 107(6-1):064103. PubMed ID: 37464604
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Can anomalous diffusion models in magnetic resonance imaging be used to characterise white matter tissue microstructure?
    Yu Q; Reutens D; Vegh V
    Neuroimage; 2018 Jul; 175():122-137. PubMed ID: 29609006
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mittag-Leffler synchronization of fractional neural networks with time-varying delays and reaction-diffusion terms using impulsive and linear controllers.
    Stamova I; Stamov G
    Neural Netw; 2017 Dec; 96():22-32. PubMed ID: 28950105
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrodifferential diffusion equation for continuous-time random walk.
    Fa KS; Wang KG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 1):011126. PubMed ID: 20365342
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intrinsic randomness of transport coefficient in subdiffusion with static disorder.
    Miyaguchi T; Akimoto T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 1):031926. PubMed ID: 21517542
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Why the Mittag-Leffler Function Can Be Considered the Queen Function of the Fractional Calculus?
    Mainardi F
    Entropy (Basel); 2020 Nov; 22(12):. PubMed ID: 33266284
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations.
    Chechkin AV; Gorenflo R; Sokolov IM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Oct; 66(4 Pt 2):046129. PubMed ID: 12443281
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Signal attenuation of PFG restricted anomalous diffusions in plate, sphere, and cylinder.
    Lin G; Zheng S; Liao X
    J Magn Reson; 2016 Nov; 272():25-36. PubMed ID: 27616657
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stochastic calculus for uncoupled continuous-time random walks.
    Germano G; Politi M; Scalas E; Schilling RL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jun; 79(6 Pt 2):066102. PubMed ID: 19658559
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anomalous diffusion in a quenched-trap model on fractal lattices.
    Miyaguchi T; Akimoto T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):010102. PubMed ID: 25679550
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Boundary Mittag-Leffler stabilization of fractional reaction-diffusion cellular neural networks.
    Liu XZ; Li ZT; Wu KN
    Neural Netw; 2020 Dec; 132():269-280. PubMed ID: 32949988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.