BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

319 related articles for article (PubMed ID: 28344999)

  • 21. A Nonhuman Primate Transplantation Model to Evaluate Hematopoietic Stem Cell Gene Editing Strategies for β-Hemoglobinopathies.
    Humbert O; Peterson CW; Norgaard ZK; Radtke S; Kiem HP
    Mol Ther Methods Clin Dev; 2018 Mar; 8():75-86. PubMed ID: 29276718
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hemoglobin genetics: recent contributions of GWAS and gene editing.
    Smith EC; Orkin SH
    Hum Mol Genet; 2016 Oct; 25(R2):R99-R105. PubMed ID: 27340226
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Multiplex CRISPR/Cas9 genome editing in hematopoietic stem cells for fetal hemoglobin reinduction generates chromosomal translocations.
    Samuelson C; Radtke S; Zhu H; Llewellyn M; Fields E; Cook S; Huang MW; Jerome KR; Kiem HP; Humbert O
    Mol Ther Methods Clin Dev; 2021 Dec; 23():507-523. PubMed ID: 34853798
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Metabolic sensor O-GlcNAcylation regulates erythroid differentiation and globin production via BCL11A.
    Luanpitpong S; Kang X; Janan M; Thumanu K; Li J; Kheolamai P; Issaragrisil S
    Stem Cell Res Ther; 2022 Jun; 13(1):274. PubMed ID: 35739577
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Endothelial Cells Promote Expansion of Long-Term Engrafting Marrow Hematopoietic Stem and Progenitor Cells in Primates.
    Gori JL; Butler JM; Kunar B; Poulos MG; Ginsberg M; Nolan DJ; Norgaard ZK; Adair JE; Rafii S; Kiem HP
    Stem Cells Transl Med; 2017 Mar; 6(3):864-876. PubMed ID: 28297579
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Induction of Fetal Hemoglobin by Introducing Natural Hereditary Persistence of Fetal Hemoglobin Mutations in the γ-Globin Gene Promoters for Genome Editing Therapies for β-Thalassemia.
    Lu D; Xu Z; Peng Z; Yang Y; Song B; Xiong Z; Ma Z; Guan H; Chen B; Nakamura Y; Zeng J; Liu N; Sun X; Chen D
    Front Genet; 2022; 13():881937. PubMed ID: 35656314
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Human CD34(+) and CD34(+)CD38(-) hematopoietic progenitors in sickle cell disease differ phenotypically and functionally from normal and suggest distinct subpopulations that generate F cells.
    Luck L; Zeng L; Hiti AL; Weinberg KI; Malik P
    Exp Hematol; 2004 May; 32(5):483-93. PubMed ID: 15145217
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Base editing of haematopoietic stem cells rescues sickle cell disease in mice.
    Newby GA; Yen JS; Woodard KJ; Mayuranathan T; Lazzarotto CR; Li Y; Sheppard-Tillman H; Porter SN; Yao Y; Mayberry K; Everette KA; Jang Y; Podracky CJ; Thaman E; Lechauve C; Sharma A; Henderson JM; Richter MF; Zhao KT; Miller SM; Wang T; Koblan LW; McCaffrey AP; Tisdale JF; Kalfa TA; Pruett-Miller SM; Tsai SQ; Weiss MJ; Liu DR
    Nature; 2021 Jul; 595(7866):295-302. PubMed ID: 34079130
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Editing the core region in HPFH deletions alters fetal and adult globin expression for treatment of β-hemoglobinopathies.
    Venkatesan V; Christopher AC; Rhiel M; Azhagiri MKK; Babu P; Walavalkar K; Saravanan B; Andrieux G; Rangaraj S; Srinivasan S; Karuppusamy KV; Jacob A; Bagchi A; Pai AA; Nakamura Y; Kurita R; Balasubramanian P; Pai R; Marepally SK; Mohankumar KM; Velayudhan SR; Boerries M; Notani D; Cathomen T; Srivastava A; Thangavel S
    Mol Ther Nucleic Acids; 2023 Jun; 32():671-688. PubMed ID: 37215154
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bone marrow characterization in sickle cell disease: inflammation and stress erythropoiesis lead to suboptimal CD34 recovery.
    Leonard A; Bonifacino A; Dominical VM; Luo M; Haro-Mora JJ; Demirci S; Uchida N; Pierciey FJ; Tisdale JF
    Br J Haematol; 2019 Jul; 186(2):286-299. PubMed ID: 30972754
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Editing the Sickle Cell Disease Mutation in Human Hematopoietic Stem Cells: Comparison of Endonucleases and Homologous Donor Templates.
    Romero Z; Lomova A; Said S; Miggelbrink A; Kuo CY; Campo-Fernandez B; Hoban MD; Masiuk KE; Clark DN; Long J; Sanchez JM; Velez M; Miyahira E; Zhang R; Brown D; Wang X; Kurmangaliyev YZ; Hollis RP; Kohn DB
    Mol Ther; 2019 Aug; 27(8):1389-1406. PubMed ID: 31178391
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Automated Good Manufacturing Practice-Compatible CRISPR-Cas9 Editing of Hematopoietic Stem and Progenitor Cells for Clinical Treatment of β-Hemoglobinopathies.
    Ureña-Bailén G; Block M; Grandi T; Aivazidou F; Quednau J; Krenz D; Daniel-Moreno A; Lamsfus-Calle A; Epting T; Handgretinger R; Wild S; Mezger M
    CRISPR J; 2023 Feb; 6(1):5-16. PubMed ID: 36662546
    [TBL] [Abstract][Full Text] [Related]  

  • 33. CRISPR-Cas9-mediated gene editing of the BCL11A enhancer for pediatric β
    Fu B; Liao J; Chen S; Li W; Wang Q; Hu J; Yang F; Hsiao S; Jiang Y; Wang L; Chen F; Zhang Y; Wang X; Li D; Liu M; Wu Y
    Nat Med; 2022 Aug; 28(8):1573-1580. PubMed ID: 35922667
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phenotypic-screening generates active novel fetal globin-inducers that downregulate Bcl11a in a monkey model.
    Makino T; Haruyama M; Katayama K; Terashima H; Tsunemi T; Miyazaki K; Terakawa M; Yamashiro K; Yoshioka R; Maeda H
    Biochem Pharmacol; 2020 Jan; 171():113717. PubMed ID: 31751536
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cellular function reinstitution of offspring red blood cells cloned from the sickle cell disease patient blood post CRISPR genome editing.
    Wen J; Tao W; Hao S; Zu Y
    J Hematol Oncol; 2017 Jun; 10(1):119. PubMed ID: 28610635
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Temporal resolution of gene derepression and proteome changes upon PROTAC-mediated degradation of BCL11A protein in erythroid cells.
    Mehta S; Buyanbat A; Kai Y; Karayel O; Goldman SR; Seruggia D; Zhang K; Fujiwara Y; Donovan KA; Zhu Q; Yang H; Nabet B; Gray NS; Mann M; Fischer ES; Adelman K; Orkin SH
    Cell Chem Biol; 2022 Aug; 29(8):1273-1287.e8. PubMed ID: 35839780
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Long-term multilineage engraftment of autologous genome-edited hematopoietic stem cells in nonhuman primates.
    Peterson CW; Wang J; Norman KK; Norgaard ZK; Humbert O; Tse CK; Yan JJ; Trimble RG; Shivak DA; Rebar EJ; Gregory PD; Holmes MC; Kiem HP
    Blood; 2016 May; 127(20):2416-26. PubMed ID: 26980728
    [TBL] [Abstract][Full Text] [Related]  

  • 38. β-globin gene transfer to human bone marrow for sickle cell disease.
    Romero Z; Urbinati F; Geiger S; Cooper AR; Wherley J; Kaufman ML; Hollis RP; de Assin RR; Senadheera S; Sahagian A; Jin X; Gellis A; Wang X; Gjertson D; Deoliveira S; Kempert P; Shupien S; Abdel-Azim H; Walters MC; Meiselman HJ; Wenby RB; Gruber T; Marder V; Coates TD; Kohn DB
    J Clin Invest; 2013 Jul; 123(8):3317-30. PubMed ID: 23863630
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Featured Article: Modulation of fetal hemoglobin in hereditary persistence of fetal hemoglobin deletion type-2, compared to Sicilian δβ-thalassemia, by BCL11A and SOX6-targeting microRNAs.
    Fornari TA; Lanaro C; Albuquerque DM; Ferreira R; Costa FF
    Exp Biol Med (Maywood); 2017 Feb; 242(3):267-274. PubMed ID: 27591578
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Clinical genome editing to treat sickle cell disease-A brief update.
    Zarghamian P; Klermund J; Cathomen T
    Front Med (Lausanne); 2022; 9():1065377. PubMed ID: 36698803
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.