These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 28345037)

  • 1. Pure climb creep mechanism drives flow in Earth's lower mantle.
    Boioli F; Carrez P; Cordier P; Devincre B; Gouriet K; Hirel P; Kraych A; Ritterbex S
    Sci Adv; 2017 Mar; 3(3):e1601958. PubMed ID: 28345037
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of diffusion-driven pure climb creep on the rheology of bridgmanite under lower mantle conditions.
    Reali R; Van Orman JA; Pigott JS; Jackson JM; Boioli F; Carrez P; Cordier P
    Sci Rep; 2019 Feb; 9(1):2053. PubMed ID: 30765772
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pressure sensitivity of olivine slip systems and seismic anisotropy of Earth's upper mantle.
    Mainprice D; Tommasi A; Couvy H; Cordier P; Frost DJ
    Nature; 2005 Feb; 433(7027):731-3. PubMed ID: 15716950
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Olivine crystals align during diffusion creep of Earth's upper mantle.
    Miyazaki T; Sueyoshi K; Hiraga T
    Nature; 2013 Oct; 502(7471):321-6. PubMed ID: 24132289
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dislocation creep in MgSiO3 perovskite at conditions of the Earth's uppermost lower mantle.
    Cordier P; Ungár T; Zsoldos L; Tichy G
    Nature; 2004 Apr; 428(6985):837-40. PubMed ID: 15103372
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Viscosity of bridgmanite determined by in situ stress and strain measurements in uniaxial deformation experiments.
    Tsujino N; Yamazaki D; Nishihara Y; Yoshino T; Higo Y; Tange Y
    Sci Adv; 2022 Apr; 8(13):eabm1821. PubMed ID: 35353572
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Periclase deforms more slowly than bridgmanite under mantle conditions.
    Cordier P; Gouriet K; Weidner T; Van Orman J; Castelnau O; Jackson JM; Carrez P
    Nature; 2023 Jan; 613(7943):303-307. PubMed ID: 36631648
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dislocation-accommodated grain boundary sliding as the major deformation mechanism of olivine in the Earth's upper mantle.
    Ohuchi T; Kawazoe T; Higo Y; Funakoshi K; Suzuki A; Kikegawa T; Irifune T
    Sci Adv; 2015 Oct; 1(9):e1500360. PubMed ID: 26601281
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mantle dynamics inferred from the crystallographic preferred orientation of bridgmanite.
    Tsujino N; Nishihara Y; Yamazaki D; Seto Y; Higo Y; Takahashi E
    Nature; 2016 Nov; 539(7627):81-84. PubMed ID: 27750277
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dislocation damping and anisotropic seismic wave attenuation in Earth's upper mantle.
    Farla RJ; Jackson I; Fitz Gerald JD; Faul UH; Zimmerman ME
    Science; 2012 Apr; 336(6079):332-5. PubMed ID: 22517856
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A nearly water-saturated mantle transition zone inferred from mineral viscosity.
    Fei H; Yamazaki D; Sakurai M; Miyajima N; Ohfuji H; Katsura T; Yamamoto T
    Sci Adv; 2017 Jun; 3(6):e1603024. PubMed ID: 28630912
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Implications for plastic flow in the deep mantle from modelling dislocations in MgSiO3 minerals.
    Carrez P; Ferré D; Cordier P
    Nature; 2007 Mar; 446(7131):68-70. PubMed ID: 17330041
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rheology of the upper mantle: a synthesis.
    Karato S; Wu P
    Science; 1993 May; 260(5109):771-8. PubMed ID: 17746109
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anisotropic diffusion creep in postperovskite provides a new model for deformation at the core-mantle boundary.
    Dobson DP; Lindsay-Scott A; Hunt SA; Bailey E; Wood IG; Brodholt JP; Vocadlo L; Wheeler J
    Proc Natl Acad Sci U S A; 2019 Dec; 116(52):26389-26393. PubMed ID: 31826951
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental evidence for silica-enriched Earth's lower mantle with ferrous iron dominant bridgmanite.
    Mashino I; Murakami M; Miyajima N; Petitgirard S
    Proc Natl Acad Sci U S A; 2020 Nov; 117(45):27899-27905. PubMed ID: 33093206
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for a Fe
    Kurnosov A; Marquardt H; Frost DJ; Ballaran TB; Ziberna L
    Nature; 2017 Mar; 543(7646):543-546. PubMed ID: 28289289
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of anisotropic structure in the Earth's lower mantle by solid-state convection.
    McNamara AK; van Keken PE; Karato S
    Nature; 2002 Mar; 416(6878):310-4. PubMed ID: 11907574
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elastic shear anisotropy of ferropericlase in Earth's lower mantle.
    Marquardt H; Speziale S; Reichmann HJ; Frost DJ; Schilling FR; Garnero EJ
    Science; 2009 Apr; 324(5924):224-6. PubMed ID: 19359580
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stability of Fe,Al-bearing bridgmanite in the lower mantle and synthesis of pure Fe-bridgmanite.
    Ismailova L; Bykova E; Bykov M; Cerantola V; McCammon C; Boffa Ballaran T; Bobrov A; Sinmyo R; Dubrovinskaia N; Glazyrin K; Liermann HP; Kupenko I; Hanfland M; Prescher C; Prakapenka V; Svitlyk V; Dubrovinsky L
    Sci Adv; 2016 Jul; 2(7):e1600427. PubMed ID: 27453945
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inferring nonlinear mantle rheology from the shape of the Hawaiian swell.
    Asaadi N; Ribe NM; Sobouti F
    Nature; 2011 May; 473(7348):501-4. PubMed ID: 21562491
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.