These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 28345340)

  • 1. Excluded Volume Approach for Ultrathin Carbon Nanotube Network Stabilization: A Mesoscopic Distinct Element Method Study.
    Wang Y; Drozdov G; Hobbie EK; Dumitrica T
    ACS Appl Mater Interfaces; 2017 Apr; 9(15):13611-13618. PubMed ID: 28345340
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancing the Elasticity of Ultrathin Single-Wall Carbon Nanotube Films with Colloidal Nanocrystals.
    Alzaid M; Roth J; Wang Y; Almutairi E; Brown SL; Dumitrică T; Hobbie EK
    Langmuir; 2017 Aug; 33(32):7889-7895. PubMed ID: 28742968
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A review of fabrication and applications of carbon nanotube film-based flexible electronics.
    Park S; Vosguerichian M; Bao Z
    Nanoscale; 2013 Mar; 5(5):1727-52. PubMed ID: 23381727
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent advances in hybrids of carbon nanotube network films and nanomaterials for their potential applications as transparent conducting films.
    Yang SB; Kong BS; Jung DH; Baek YK; Han CS; Oh SK; Jung HT
    Nanoscale; 2011 Apr; 3(4):1361-73. PubMed ID: 21359350
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrathin single-walled carbon nanotube network framed graphene hybrids.
    Wang R; Hong T; Xu YQ
    ACS Appl Mater Interfaces; 2015 Mar; 7(9):5233-8. PubMed ID: 25686199
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stretchable carbon nanotube charge-trap floating-gate memory and logic devices for wearable electronics.
    Son D; Koo JH; Song JK; Kim J; Lee M; Shim HJ; Park M; Lee M; Kim JH; Kim DH
    ACS Nano; 2015 May; 9(5):5585-93. PubMed ID: 25897592
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A review of carbon nanotube- and graphene-based flexible thin-film transistors.
    Sun DM; Liu C; Ren WC; Cheng HM
    Small; 2013 Apr; 9(8):1188-205. PubMed ID: 23519953
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Free-standing highly conductive transparent ultrathin single-walled carbon nanotube films.
    Liu Q; Fujigaya T; Cheng HM; Nakashima N
    J Am Chem Soc; 2010 Nov; 132(46):16581-6. PubMed ID: 21028804
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Critical oxide thickness for efficient single-walled carbon nanotube growth on silicon using thin SiO2 diffusion barriers.
    Simmons JM; Nichols BM; Marcus MS; Castellini OM; Hamers RJ; Eriksson MA
    Small; 2006 Jul; 2(7):902-9. PubMed ID: 17193143
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photoinduced superwetting single-walled carbon nanotube/TiO(2) ultrathin network films for ultrafast separation of oil-in-water emulsions.
    Gao SJ; Shi Z; Zhang WB; Zhang F; Jin J
    ACS Nano; 2014 Jun; 8(6):6344-52. PubMed ID: 24869793
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Screen printing as a scalable and low-cost approach for rigid and flexible thin-film transistors using separated carbon nanotubes.
    Cao X; Chen H; Gu X; Liu B; Wang W; Cao Y; Wu F; Zhou C
    ACS Nano; 2014 Dec; 8(12):12769-76. PubMed ID: 25497107
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tuning carbon nanotube assembly for flexible, strong and conductive films.
    Wang Y; Li M; Gu Y; Zhang X; Wang S; Li Q; Zhang Z
    Nanoscale; 2015 Feb; 7(7):3060-6. PubMed ID: 25607989
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbon nanotube network-silicon oxide non-volatile switches.
    Liao AD; Araujo PT; Xu R; Dresselhaus MS
    Nat Commun; 2014 Dec; 5():5673. PubMed ID: 25482919
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and characterization of functionalized ionic liquid-stabilized metal (gold and platinum) nanoparticles and metal nanoparticle/carbon nanotube hybrids.
    Zhang H; Cui H
    Langmuir; 2009 Mar; 25(5):2604-12. PubMed ID: 19437685
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A repeated halving approach to fabricate ultrathin single-walled carbon nanotube films for transparent supercapacitors.
    Niu Z; Zhou W; Chen J; Feng G; Li H; Hu Y; Ma W; Dong H; Li J; Xie S
    Small; 2013 Feb; 9(4):518-24. PubMed ID: 23117974
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent Development of Carbon Nanotube Transparent Conductive Films.
    Yu L; Shearer C; Shapter J
    Chem Rev; 2016 Nov; 116(22):13413-13453. PubMed ID: 27704787
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates.
    Cao Q; Kim HS; Pimparkar N; Kulkarni JP; Wang C; Shim M; Roy K; Alam MA; Rogers JA
    Nature; 2008 Jul; 454(7203):495-500. PubMed ID: 18650920
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dispersion and phase separation of carbon nanotubes in ultrathin polymer films.
    Foster J; Singamaneni S; Kattumenu R; Bliznyuk V
    J Colloid Interface Sci; 2005 Jul; 287(1):167-72. PubMed ID: 15914162
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural stability of carbon nanotube films: the role of bending buckling.
    Volkov AN; Zhigilei LV
    ACS Nano; 2010 Oct; 4(10):6187-95. PubMed ID: 20931973
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mesoscale mechanics of twisting carbon nanotube yarns.
    Mirzaeifar R; Qin Z; Buehler MJ
    Nanoscale; 2015 Mar; 7(12):5435-45. PubMed ID: 25732328
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.