These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 28345342)

  • 1. The Role of Strain in the Homoaromatization of Semibullvalenes.
    Williams RV; Al-Sehemi AG; Meier AK; Brown ZZ; Armantrout JR
    J Org Chem; 2017 Apr; 82(8):4136-4147. PubMed ID: 28345342
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Are 1,5-disubstituted semibullvalenes that have C2v equilibrium geometries necessarily bishomoaromatic?
    Brown EC; Henze DK; Borden WT
    J Am Chem Soc; 2002 Dec; 124(50):14977-82. PubMed ID: 12475340
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How important is bishomoaromatic stabilization in determining the relative barrier heights for the degenerate Cope rearrangements of semibullvalene, barbaralane, bullvalene, and dihydrobullvalene?
    Hrovat DA; Brown EC; Williams RV; Quast H; Borden WT
    J Org Chem; 2005 Apr; 70(7):2627-32. PubMed ID: 15787553
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neutral bishomoaromatic semibullvalenes.
    Wu HS; Jiao H; Wang ZX; Schleyer Pv
    J Am Chem Soc; 2003 Sep; 125(35):10524-5. PubMed ID: 12940727
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Localized and delocalized perfluorosemibullvalenes.
    Wu HS; Jia J; Jiao H
    J Mol Model; 2007 Jan; 13(1):133-6. PubMed ID: 16953441
    [TBL] [Abstract][Full Text] [Related]  

  • 6. QTAIM study on the degenerate cope rearrangements of 1,5-hexadiene and semibullvalene.
    Brown EC; Bader RF; Werstiuk NH
    J Phys Chem A; 2009 Apr; 113(13):3254-65. PubMed ID: 19275139
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure-correlation principles connecting ground state properties and reaction barrier heights for the Cope rearrangement of semibullvalenes.
    Jana DF; Wodrich MD; Corminboeuf C
    J Org Chem; 2012 Mar; 77(5):2548-52. PubMed ID: 22300337
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective stabilization of transition state structures for cope rearrangements of semibullvalene and barbaralane through interactions with halogens.
    Wang SC; Tantillo DJ
    J Phys Chem A; 2007 Aug; 111(30):7149-53. PubMed ID: 17602458
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calculations predict that carbon tunneling allows the degenerate cope rearrangement of semibullvalene to occur rapidly at cryogenic temperatures.
    Zhang X; Hrovat DA; Borden WT
    Org Lett; 2010 Jun; 12(12):2798-801. PubMed ID: 20507087
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How a Quantum Chemical Topology Analysis Enables Prediction of Electron Density Transfers in Chemical Reactions. The Degenerated Cope Rearrangement of Semibullvalene.
    González-Navarrete P; Andrés J; Berski S
    J Phys Chem Lett; 2012 Sep; 3(17):2500-5. PubMed ID: 26292140
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Twin-Excited State as a Probe for the Transition State in Concerted Unimolecular Reactions: The Semibullvalene Rearrangement.
    Zilberg S; Haas Y; Danovich D; Shaik S
    Angew Chem Int Ed Engl; 1998 Jun; 37(10):1394-1397. PubMed ID: 29710902
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Equilibrium between Localized and Delocalized States of Thermochromic Semibullvalenes and Barbaralanes-Direct Observation of Transition States of Degenerate Cope Rearrangements.
    Quast H; Seefelder M
    Angew Chem Int Ed Engl; 1999; 38(8):1064-7. PubMed ID: 25138495
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heavy-Atom Tunneling in Semibullvalenes: How Driving Force, Substituents, and Environment Influence the Tunneling Rates.
    Schleif T; Tatchen J; Rowen JF; Beyer F; Sanchez-Garcia E; Sander W
    Chemistry; 2020 Aug; 26(46):10452-10458. PubMed ID: 32293763
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electron-Nuclear Motion in the Cope Rearrangement of Semibullvalene: Ever Synchronous?
    Bredtmann T; Paulus B
    J Chem Theory Comput; 2013 Jul; 9(7):3026-34. PubMed ID: 26583984
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamical Effects along the Bifurcation Pathway Control Semibullvalene Formation in Deazetization Reactions.
    Mandal N; Datta A
    J Phys Chem B; 2018 Jan; 122(3):1239-1244. PubMed ID: 29316395
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Semibullvalene and diazasemibullvalene: recent advances in the synthesis, reaction chemistry, and synthetic applications.
    Zhang S; Zhang WX; Xi Z
    Acc Chem Res; 2015 Jul; 48(7):1823-31. PubMed ID: 26061608
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sequential transition States and the valley-ridge inflection point in the formation of a semibullvalene.
    Zhou C; Birney DM
    Org Lett; 2002 Sep; 4(19):3279-82. PubMed ID: 12227768
    [TBL] [Abstract][Full Text] [Related]  

  • 18. External Electric Fields Interrupt the Concerted Cope Rearrangement of Semibullvalene.
    Laconsay CJ; Mallick D; Shaik S
    J Org Chem; 2021 Jan; 86(1):731-738. PubMed ID: 33280381
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solvent Effects on the Equilibrium between Localized and Delocalized States of Thermochromic Semibullvalenes and Barbaralanes.
    Seefelder M; Quast H
    Angew Chem Int Ed Engl; 1999; 38(8):1068-71. PubMed ID: 25138496
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electronic bond-to-bond fluxes in pericyclic reactions: synchronous or asynchronous?
    Bredtmann T; Manz J
    Angew Chem Int Ed Engl; 2011 Dec; 50(52):12652-4. PubMed ID: 22057668
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.