These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

348 related articles for article (PubMed ID: 28345584)

  • 61. Tunable, omnidirectional, and nearly perfect resonant absorptions by a graphene-hBN-based hole array metamaterial.
    Hajian H; Ghobadi A; Butun B; Ozbay E
    Opt Express; 2018 Jun; 26(13):16940-16954. PubMed ID: 30119512
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Robust Phonon-Plasmon Coupling in Quasifreestanding Graphene on Silicon Carbide.
    Koch RJ; Fryska S; Ostler M; Endlich M; Speck F; Hänsel T; Schaefer JA; Seyller T
    Phys Rev Lett; 2016 Mar; 116(10):106802. PubMed ID: 27015502
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Active control of micrometer plasmon propagation in suspended graphene.
    Hu H; Yu R; Teng H; Hu D; Chen N; Qu Y; Yang X; Chen X; McLeod AS; Alonso-González P; Guo X; Li C; Yao Z; Li Z; Chen J; Sun Z; Liu M; García de Abajo FJ; Dai Q
    Nat Commun; 2022 Mar; 13(1):1465. PubMed ID: 35304465
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Photonic crystal for graphene plasmons.
    Xiong L; Forsythe C; Jung M; McLeod AS; Sunku SS; Shao YM; Ni GX; Sternbach AJ; Liu S; Edgar JH; Mele EJ; Fogler MM; Shvets G; Dean CR; Basov DN
    Nat Commun; 2019 Oct; 10(1):4780. PubMed ID: 31636265
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Tunable Lifetime and Nonlinearity in Two Dimensional Materials Plasmonic-Photonic Absorber.
    Zhou R; Yang S; Zhao Y
    Nanomaterials (Basel); 2022 Jan; 12(3):. PubMed ID: 35159760
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Electronic and plasmonic phenomena at graphene grain boundaries.
    Fei Z; Rodin AS; Gannett W; Dai S; Regan W; Wagner M; Liu MK; McLeod AS; Dominguez G; Thiemens M; Castro Neto AH; Keilmann F; Zettl A; Hillenbrand R; Fogler MM; Basov DN
    Nat Nanotechnol; 2013 Nov; 8(11):821-5. PubMed ID: 24122082
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Molecular Plasmonics.
    Lauchner A; Schlather AE; Manjavacas A; Cui Y; McClain MJ; Stec GJ; García de Abajo FJ; Nordlander P; Halas NJ
    Nano Lett; 2015 Sep; 15(9):6208-14. PubMed ID: 26244925
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Monolithic NPG nanoparticles with large surface area, tunable plasmonics, and high-density internal hot-spots.
    Zhao F; Zeng J; Parvez Arnob MM; Sun P; Qi J; Motwani P; Gheewala M; Li CH; Paterson A; Strych U; Raja B; Willson RC; Wolfe JC; Lee TR; Shih WC
    Nanoscale; 2014 Jul; 6(14):8199-207. PubMed ID: 24926835
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Gated tunability and hybridization of localized plasmons in nanostructured graphene.
    Fang Z; Thongrattanasiri S; Schlather A; Liu Z; Ma L; Wang Y; Ajayan PM; Nordlander P; Halas NJ; García de Abajo FJ
    ACS Nano; 2013 Mar; 7(3):2388-95. PubMed ID: 23390960
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Intrinsic terahertz plasmons and magnetoplasmons in large scale monolayer graphene.
    Crassee I; Orlita M; Potemski M; Walter AL; Ostler M; Seyller T; Gaponenko I; Chen J; Kuzmenko AB
    Nano Lett; 2012 May; 12(5):2470-4. PubMed ID: 22519967
    [TBL] [Abstract][Full Text] [Related]  

  • 71. The absorption tunability and enhanced electromagnetic coupling of terahertz-plasmons in grating-gate AlN/GaN plasmonic device.
    Wang L; Chen X; Hu W; Yu A; Wang S; Lu W
    Opt Express; 2013 May; 21(9):10821-30. PubMed ID: 23669939
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Boosting infrared energy transfer in 3D nanoporous gold antennas.
    Garoli D; Calandrini E; Bozzola A; Ortolani M; Cattarin S; Barison S; Toma A; De Angelis F
    Nanoscale; 2017 Jan; 9(2):915-922. PubMed ID: 28000833
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Coupling of plasmon and photon modes in a graphene-based multilayer structure.
    Ding L; Xu W; Zhao C; Wang S; Liu H
    Opt Lett; 2015 Oct; 40(19):4524-7. PubMed ID: 26421572
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Plasmon modes in graphene: status and prospect.
    Politano A; Chiarello G
    Nanoscale; 2014 Oct; 6(19):10927-40. PubMed ID: 25130215
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Far-field and near-field monitoring of hybridized optical modes from Au nanoprisms suspended on a graphene/Si nanopillar array.
    Nien LW; Chen K; Dao TD; Ishii S; Hsueh CH; Nagao T
    Nanoscale; 2017 Nov; 9(43):16950-16959. PubMed ID: 29077124
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Strong modulation of plasmons in Graphene with the use of an Inverted pyramid array diffraction grating.
    Matthaiakakis N; Mizuta H; Charlton MD
    Sci Rep; 2016 Jun; 6():27550. PubMed ID: 27278301
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Topologically protected Dirac plasmons in a graphene superlattice.
    Pan D; Yu R; Xu H; García de Abajo FJ
    Nat Commun; 2017 Nov; 8(1):1243. PubMed ID: 29093488
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Giant optical activity in plasmonic chiral structure via double-layer graphene moiré stacking in mid-infrared region.
    Chi J; Liu H; Wang Z; Huang N
    Opt Express; 2020 Feb; 28(4):4529-4540. PubMed ID: 32121687
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Perfect-absorption graphene metamaterials for surface-enhanced molecular fingerprint spectroscopy.
    Guo X; Hu H; Liao B; Zhu X; Yang X; Dai Q
    Nanotechnology; 2018 May; 29(18):184004. PubMed ID: 29457777
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Enhanced Molecular Infrared Spectroscopy Employing Bilayer Graphene Acoustic Plasmon Resonator.
    Wen C; Luo J; Xu W; Zhu Z; Qin S; Zhang J
    Biosensors (Basel); 2021 Oct; 11(11):. PubMed ID: 34821647
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.