BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 28345593)

  • 1. Microstructural tissue-engineering in the rachis and barbs of bird feathers.
    Lingham-Soliar T
    Sci Rep; 2017 Mar; 7():45162. PubMed ID: 28345593
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new helical crossed-fibre structure of β-keratin in flight feathers and its biomechanical implications.
    Lingham-Soliar T; Murugan N
    PLoS One; 2013; 8(6):e65849. PubMed ID: 23762440
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell structure of developing barbs and barbules in downfeathers of the chick: Central role of barb ridge morphogenesis for the evolution of feathers.
    Alibardi L
    J Submicrosc Cytol Pathol; 2005 Apr; 37(1):19-41. PubMed ID: 16136726
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective biodegradation of keratin matrix in feather rachis reveals classic bioengineering.
    Lingham-Soliar T; Bonser RH; Wesley-Smith J
    Proc Biol Sci; 2010 Apr; 277(1685):1161-8. PubMed ID: 20018788
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Beta-keratin localization in developing alligator scales and feathers in relation to the development and evolution of feathers.
    Alibardi L; Knapp LW; Sawyer RH
    J Submicrosc Cytol Pathol; 2006; 38(2-3):175-92. PubMed ID: 17784647
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cells of embryonic and regenerating germinal layers within barb ridges: implication for the development, evolution and diversification of feathers.
    Alibardi L
    J Submicrosc Cytol Pathol; 2006 Apr; 38(1):51-76. PubMed ID: 17283967
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of a feather β-keratin gene exclusively expressed in pennaceous barbule cells of contour feathers in chicken.
    Kowata K; Nakaoka M; Nishio K; Fukao A; Satoh A; Ogoshi M; Takahashi S; Tsudzuki M; Takeuchi S
    Gene; 2014 May; 542(1):23-8. PubMed ID: 24631266
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrastructure of the feather follicle in relation to the formation of the rachis in pennaceous feathers.
    Alibardi L
    Anat Sci Int; 2010 Jun; 85(2):79-91. PubMed ID: 19714292
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A lightweight, biological structure with tailored stiffness: The feather vane.
    Sullivan TN; Pissarenko A; Herrera SA; Kisailus D; Lubarda VA; Meyers MA
    Acta Biomater; 2016 Sep; 41():27-39. PubMed ID: 27184403
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An engineering perspective on the microstructure and compression properties of the seagull Larus argentatus feather rachis.
    Zou M; Zhou J; Xu L; Song J; Liu S; Li X
    Micron; 2019 Nov; 126():102735. PubMed ID: 31450186
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The molecular evolution of feathers with direct evidence from fossils.
    Pan Y; Zheng W; Sawyer RH; Pennington MW; Zheng X; Wang X; Wang M; Hu L; O'Connor J; Zhao T; Li Z; Schroeter ER; Wu F; Xu X; Zhou Z; Schweitzer MH
    Proc Natl Acad Sci U S A; 2019 Feb; 116(8):3018-3023. PubMed ID: 30692253
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Young's modulus varies with differential orientation of keratin in feathers.
    Cameron GJ; Wess TJ; Bonser RH
    J Struct Biol; 2003 Aug; 143(2):118-23. PubMed ID: 12972348
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Colour-producing β-keratin nanofibres in blue penguin (Eudyptula minor) feathers.
    D'Alba L; Saranathan V; Clarke JA; Vinther JA; Prum RO; Shawkey MD
    Biol Lett; 2011 Aug; 7(4):543-6. PubMed ID: 21307042
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and optical function of amorphous photonic nanostructures from avian feather barbs: a comparative small angle X-ray scattering (SAXS) analysis of 230 bird species.
    Saranathan V; Forster JD; Noh H; Liew SF; Mochrie SG; Cao H; Dufresne ER; Prum RO
    J R Soc Interface; 2012 Oct; 9(75):2563-80. PubMed ID: 22572026
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cytochemical and molecular characteristics of the process of cornification during feather morphogenesis.
    Alibardi L; Toni M
    Prog Histochem Cytochem; 2008; 43(1):1-69. PubMed ID: 18394491
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell structure of developing downfeathers in the zebrafinch with emphasis on barb ridge morphogenesis.
    Alibardi L; Sawyer RH
    J Anat; 2006 May; 208(5):621-42. PubMed ID: 16637885
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Are melanized feather barbs stronger?
    Butler M; Johnson AS
    J Exp Biol; 2004 Jan; 207(Pt 2):285-93. PubMed ID: 14668312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fine structure of juvenile feathers of the zebrafinch in relation to the evolution and diversification of pennaceous feathers.
    Alibardi L
    J Submicrosc Cytol Pathol; 2005 Nov; 37(3-4):323-43. PubMed ID: 16612976
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell structure of barb ridges in down feathers and juvenile wing feathers of the developing chick embryo: barb ridge modification in relation to feather evolution.
    Alibardi L
    Ann Anat; 2006 Jul; 188(4):303-18. PubMed ID: 16856595
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gap and tight junctions in the formation of feather branches: A descriptive ultrastructural study.
    Alibardi L
    Ann Anat; 2010 Aug; 192(4):251-8. PubMed ID: 20691576
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.