These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 28345593)

  • 1. Microstructural tissue-engineering in the rachis and barbs of bird feathers.
    Lingham-Soliar T
    Sci Rep; 2017 Mar; 7():45162. PubMed ID: 28345593
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new helical crossed-fibre structure of β-keratin in flight feathers and its biomechanical implications.
    Lingham-Soliar T; Murugan N
    PLoS One; 2013; 8(6):e65849. PubMed ID: 23762440
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell structure of developing barbs and barbules in downfeathers of the chick: Central role of barb ridge morphogenesis for the evolution of feathers.
    Alibardi L
    J Submicrosc Cytol Pathol; 2005 Apr; 37(1):19-41. PubMed ID: 16136726
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective biodegradation of keratin matrix in feather rachis reveals classic bioengineering.
    Lingham-Soliar T; Bonser RH; Wesley-Smith J
    Proc Biol Sci; 2010 Apr; 277(1685):1161-8. PubMed ID: 20018788
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Beta-keratin localization in developing alligator scales and feathers in relation to the development and evolution of feathers.
    Alibardi L; Knapp LW; Sawyer RH
    J Submicrosc Cytol Pathol; 2006; 38(2-3):175-92. PubMed ID: 17784647
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cells of embryonic and regenerating germinal layers within barb ridges: implication for the development, evolution and diversification of feathers.
    Alibardi L
    J Submicrosc Cytol Pathol; 2006 Apr; 38(1):51-76. PubMed ID: 17283967
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of a feather β-keratin gene exclusively expressed in pennaceous barbule cells of contour feathers in chicken.
    Kowata K; Nakaoka M; Nishio K; Fukao A; Satoh A; Ogoshi M; Takahashi S; Tsudzuki M; Takeuchi S
    Gene; 2014 May; 542(1):23-8. PubMed ID: 24631266
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrastructure of the feather follicle in relation to the formation of the rachis in pennaceous feathers.
    Alibardi L
    Anat Sci Int; 2010 Jun; 85(2):79-91. PubMed ID: 19714292
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A lightweight, biological structure with tailored stiffness: The feather vane.
    Sullivan TN; Pissarenko A; Herrera SA; Kisailus D; Lubarda VA; Meyers MA
    Acta Biomater; 2016 Sep; 41():27-39. PubMed ID: 27184403
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An engineering perspective on the microstructure and compression properties of the seagull Larus argentatus feather rachis.
    Zou M; Zhou J; Xu L; Song J; Liu S; Li X
    Micron; 2019 Nov; 126():102735. PubMed ID: 31450186
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The molecular evolution of feathers with direct evidence from fossils.
    Pan Y; Zheng W; Sawyer RH; Pennington MW; Zheng X; Wang X; Wang M; Hu L; O'Connor J; Zhao T; Li Z; Schroeter ER; Wu F; Xu X; Zhou Z; Schweitzer MH
    Proc Natl Acad Sci U S A; 2019 Feb; 116(8):3018-3023. PubMed ID: 30692253
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Young's modulus varies with differential orientation of keratin in feathers.
    Cameron GJ; Wess TJ; Bonser RH
    J Struct Biol; 2003 Aug; 143(2):118-23. PubMed ID: 12972348
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Colour-producing β-keratin nanofibres in blue penguin (Eudyptula minor) feathers.
    D'Alba L; Saranathan V; Clarke JA; Vinther JA; Prum RO; Shawkey MD
    Biol Lett; 2011 Aug; 7(4):543-6. PubMed ID: 21307042
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and optical function of amorphous photonic nanostructures from avian feather barbs: a comparative small angle X-ray scattering (SAXS) analysis of 230 bird species.
    Saranathan V; Forster JD; Noh H; Liew SF; Mochrie SG; Cao H; Dufresne ER; Prum RO
    J R Soc Interface; 2012 Oct; 9(75):2563-80. PubMed ID: 22572026
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cytochemical and molecular characteristics of the process of cornification during feather morphogenesis.
    Alibardi L; Toni M
    Prog Histochem Cytochem; 2008; 43(1):1-69. PubMed ID: 18394491
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell structure of developing downfeathers in the zebrafinch with emphasis on barb ridge morphogenesis.
    Alibardi L; Sawyer RH
    J Anat; 2006 May; 208(5):621-42. PubMed ID: 16637885
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Are melanized feather barbs stronger?
    Butler M; Johnson AS
    J Exp Biol; 2004 Jan; 207(Pt 2):285-93. PubMed ID: 14668312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fine structure of juvenile feathers of the zebrafinch in relation to the evolution and diversification of pennaceous feathers.
    Alibardi L
    J Submicrosc Cytol Pathol; 2005 Nov; 37(3-4):323-43. PubMed ID: 16612976
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell structure of barb ridges in down feathers and juvenile wing feathers of the developing chick embryo: barb ridge modification in relation to feather evolution.
    Alibardi L
    Ann Anat; 2006 Jul; 188(4):303-18. PubMed ID: 16856595
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gap and tight junctions in the formation of feather branches: A descriptive ultrastructural study.
    Alibardi L
    Ann Anat; 2010 Aug; 192(4):251-8. PubMed ID: 20691576
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.