These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 28345593)

  • 41. The Feather Structure of Oriental Honey Buzzards (Pernis ptilorhynchus) and Other Hawk Species in Relation to Their Foraging Behavior.
    Sievwright H; Higuchi H
    Zoolog Sci; 2016 Jun; 33(3):295-302. PubMed ID: 27268984
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Thermal behavior of fowl feather keratin.
    Takahashi K; Yamamoto H; Yokote Y; Hattori M
    Biosci Biotechnol Biochem; 2004 Sep; 68(9):1875-81. PubMed ID: 15388962
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cornification of the pulp epithelium and formation of pulp cups in downfeathers and regenerating feathers.
    Alibardi L
    Anat Sci Int; 2009 Dec; 84(4):269-79. PubMed ID: 19363649
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The peacock's train (Pavo cristatus and Pavo cristatus mut. alba) II. The molecular parameters of feather keratin plasticity.
    Weiss IM; Schmitt KP; Kirchner HO
    J Exp Zool A Ecol Genet Physiol; 2011 Jun; 315(5):266-73. PubMed ID: 21404446
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Fault bars in bird feathers: mechanisms, and ecological and evolutionary causes and consequences.
    Jovani R; Rohwer S
    Biol Rev Camb Philos Soc; 2017 May; 92(2):1113-1127. PubMed ID: 27062218
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The structural basis of the two-dimensional net pattern observed in the X-ray diffraction pattern of avian keratin.
    Fraser RD; Parry DA
    J Struct Biol; 2011 Dec; 176(3):340-9. PubMed ID: 21888975
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Towards a comprehensive model of feather regeneration.
    Maderson PF; Hillenius WJ; Hiller U; Dove CC
    J Morphol; 2009 Oct; 270(10):1166-208. PubMed ID: 19396862
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The morphogenesis of feathers.
    Yu M; Wu P; Widelitz RB; Chuong CM
    Nature; 2002 Nov; 420(6913):308-12. PubMed ID: 12442169
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Using Pb-Al ratios to discriminate between internal and external deposition of Pb in feathers.
    Cardiel IE; Taggart MA; Mateo R
    Ecotoxicol Environ Saf; 2011 May; 74(4):911-7. PubMed ID: 21255838
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Amorphous diamond-structured photonic crystal in the feather barbs of the scarlet macaw.
    Yin H; Dong B; Liu X; Zhan T; Shi L; Zi J; Yablonovitch E
    Proc Natl Acad Sci U S A; 2012 Jul; 109(27):10798-801. PubMed ID: 22615350
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Nanomechanical properties of bird feather rachises: exploring naturally occurring fibre reinforced laminar composites.
    Laurent CM; Palmer C; Boardman RP; Dyke G; Cook RB
    J R Soc Interface; 2014 Dec; 11(101):20140961. PubMed ID: 25339689
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ontogeny of aerodynamics in mallards: comparative performance and developmental implications.
    Dial TR; Heers AM; Tobalske BW
    J Exp Biol; 2012 Nov; 215(Pt 21):3693-702. PubMed ID: 22855612
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Unzipping bird feathers.
    Kovalev A; Filippov AE; Gorb SN
    J R Soc Interface; 2014 Mar; 11(92):20130988. PubMed ID: 24352674
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Mid-Cretaceous amber inclusions reveal morphogenesis of extinct rachis-dominated feathers.
    Carroll NR; Chiappe LM; Bottjer DJ
    Sci Rep; 2019 Dec; 9(1):18108. PubMed ID: 31792276
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Rachis morphology cannot accurately predict the mechanical performance of primary feathers in extant (and therefore fossil) feathered flyers.
    Lees J; Garner T; Cooper G; Nudds R
    R Soc Open Sci; 2017 Feb; 4(2):160927. PubMed ID: 28386445
    [TBL] [Abstract][Full Text] [Related]  

  • 56. IR super-resolution imaging of avian feather keratins detected by using vibrational sum-frequency generation.
    Watase Y; Takahashi H; Ushio K; Fujii M; Sakai M
    Biophys Chem; 2020 Dec; 267():106482. PubMed ID: 33022568
    [TBL] [Abstract][Full Text] [Related]  

  • 57. An electron microscope study of the fine structure of feather keratin.
    FILSHIE BK; ROGERS GE
    J Cell Biol; 1962 Apr; 13(1):1-12. PubMed ID: 13892901
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Filamentous Structure of Hard β-Keratins in the Epidermal Appendages of Birds and Reptiles.
    Fraser RD; Parry DA
    Subcell Biochem; 2017; 82():231-252. PubMed ID: 28101864
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Theory of the growth and evolution of feather shape.
    Prum RO; Williamson S
    J Exp Zool; 2001 Apr; 291(1):30-57. PubMed ID: 11335915
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Mechanisms of evolutionary change in structural plumage coloration among bluebirds (Sialia spp.).
    Shawkey MD; Balenger SL; Hill GE; Johnson LS; Keyser AJ; Siefferman L
    J R Soc Interface; 2006 Aug; 3(9):527-32. PubMed ID: 16849249
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.