BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 28345629)

  • 41. The Wilms' tumor suppressor WT1 inhibits malignant progression of neoplastigenic mammary epithelial cells.
    Wang L; Wang ZY
    Anticancer Res; 2008; 28(4B):2155-60. PubMed ID: 18751389
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Changes in WT1 splicing are associated with a specific gene expression profile in Wilms' tumour.
    Baudry D; Faussillon M; Cabanis MO; Rigolet M; Zucker JM; Patte C; Sarnacki S; Boccon-Gibod L; Junien C; Jeanpierre C
    Oncogene; 2002 Aug; 21(36):5566-73. PubMed ID: 12165855
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The modulation of WTI transcription function by cofactors.
    Roberts SG
    Biochem Soc Symp; 2006; (73):191-201. PubMed ID: 16626299
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Transcriptional regulation by the Wilms' tumour suppressor protein WT1.
    Wagner KJ; Roberts SG
    Biochem Soc Trans; 2004 Dec; 32(Pt 6):932-5. PubMed ID: 15506928
    [TBL] [Abstract][Full Text] [Related]  

  • 45. WT1 promotes cell proliferation in non-small cell lung cancer cell lines through up-regulating cyclin D1 and p-pRb in vitro and in vivo.
    Xu C; Wu C; Xia Y; Zhong Z; Liu X; Xu J; Cui F; Chen B; Røe OD; Li A; Chen Y
    PLoS One; 2013; 8(8):e68837. PubMed ID: 23936312
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Wilms' tumor 1 enhances Cisplatin-resistance of advanced NSCLC.
    Wu C; Wang Y; Xia Y; He S; Wang Z; Chen Y; Wu C; Shu Y; Jiang J
    FEBS Lett; 2014 Dec; 588(24):4566-72. PubMed ID: 25447528
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The role of WT1 isoforms in vasculogenic mimicry and metastatic potential of human triple negative breast cancer cells.
    Bissanum R; Lirdprapamongkol K; Svasti J; Navakanitworakul R; Kanokwiroon K
    Biochem Biophys Res Commun; 2017 Dec; 494(1-2):256-262. PubMed ID: 29024629
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Long noncoding RNA ROR regulates chemoresistance in docetaxel-resistant lung adenocarcinoma cells via epithelial mesenchymal transition pathway.
    Pan Y; Chen J; Tao L; Zhang K; Wang R; Chu X; Chen L
    Oncotarget; 2017 May; 8(20):33144-33158. PubMed ID: 28388536
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Promoter methylation of RASSF1A modulates the effect of the microtubule-targeting agent docetaxel in breast cancer.
    Gil EY; Jo UH; Jeong H; Whang YM; Woo OH; Cho KR; Seo JH; Kim A; Lee ES; Koh I; Kim YH; Park KH
    Int J Oncol; 2012 Aug; 41(2):611-20. PubMed ID: 22581300
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Epithelial-mesenchymal transition spectrum quantification and its efficacy in deciphering survival and drug responses of cancer patients.
    Tan TZ; Miow QH; Miki Y; Noda T; Mori S; Huang RY; Thiery JP
    EMBO Mol Med; 2014 Oct; 6(10):1279-93. PubMed ID: 25214461
    [TBL] [Abstract][Full Text] [Related]  

  • 51. miRNA-34a is associated with docetaxel resistance in human breast cancer cells.
    Kastl L; Brown I; Schofield AC
    Breast Cancer Res Treat; 2012 Jan; 131(2):445-54. PubMed ID: 21399894
    [TBL] [Abstract][Full Text] [Related]  

  • 52. CYP3A4 expression to predict treatment response to docetaxel for metastasis and recurrence of primary breast cancer.
    Sakurai K; Enomoto K; Matsuo S; Amano S; Shiono M
    Surg Today; 2011 May; 41(5):674-9. PubMed ID: 21533940
    [TBL] [Abstract][Full Text] [Related]  

  • 53. High expression of Wilms' tumor suppressor gene predicts poor prognosis in breast cancer patients.
    Miyoshi Y; Ando A; Egawa C; Taguchi T; Tamaki Y; Tamaki H; Sugiyama H; Noguchi S
    Clin Cancer Res; 2002 May; 8(5):1167-71. PubMed ID: 12006533
    [TBL] [Abstract][Full Text] [Related]  

  • 54. WT1 regulates HOXB9 gene expression in a bidirectional way.
    Schmidt V; Sieckmann T; Kirschner KM; Scholz H
    Biochim Biophys Acta Gene Regul Mech; 2021; 1864(11-12):194764. PubMed ID: 34508900
    [TBL] [Abstract][Full Text] [Related]  

  • 55. MiR-346 promotes the biological function of breast cancer cells by targeting SRCIN1 and reduces chemosensitivity to docetaxel.
    Yang F; Luo LJ; Zhang L; Wang DD; Yang SJ; Ding L; Li J; Chen D; Ma R; Wu JZ; Tang JH
    Gene; 2017 Feb; 600():21-28. PubMed ID: 27913185
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Every Beat You Take-The Wilms' Tumor Suppressor WT1 and the Heart.
    Wagner N; Wagner KD
    Int J Mol Sci; 2021 Jul; 22(14):. PubMed ID: 34299295
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Propofol Reversed Hypoxia-Induced Docetaxel Resistance in Prostate Cancer Cells by Preventing Epithelial-Mesenchymal Transition by Inhibiting Hypoxia-Inducible Factor 1
    Qian J; Shen S; Chen W; Chen N
    Biomed Res Int; 2018; 2018():4174232. PubMed ID: 29568752
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A targeted RNAi screen of the breast cancer genome identifies KIF14 and TLN1 as genes that modulate docetaxel chemosensitivity in triple-negative breast cancer.
    Singel SM; Cornelius C; Batten K; Fasciani G; Wright WE; Lum L; Shay JW
    Clin Cancer Res; 2013 Apr; 19(8):2061-70. PubMed ID: 23479679
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Expression of ABCG2 and p-glycoprotein in residual breast cancer tissue after chemotherapy and their correlation with epithelial-mesenchymal transition].
    Qu H; Fang L; Duan L; Long X
    Zhonghua Bing Li Xue Za Zhi; 2014 Apr; 43(4):236-40. PubMed ID: 24915813
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Promoter methylation and mRNA expression of WT1 gene in MCF10 breast cancer model].
    Yang JL; Klinkebiel D; Boland MJ; Tang L; Christman JK
    Zhonghua Bing Li Xue Za Zhi; 2007 Apr; 36(4):253-8. PubMed ID: 17706117
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.