These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 28345645)

  • 1. Influence of Anthropogenic Climate Change on Planetary Wave Resonance and Extreme Weather Events.
    Mann ME; Rahmstorf S; Kornhuber K; Steinman BA; Miller SK; Coumou D
    Sci Rep; 2017 Mar; 7():45242. PubMed ID: 28345645
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Projected changes in persistent extreme summer weather events: The role of quasi-resonant amplification.
    Mann ME; Rahmstorf S; Kornhuber K; Steinman BA; Miller SK; Petri S; Coumou D
    Sci Adv; 2018 Oct; 4(10):eaat3272. PubMed ID: 30402537
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ARCTIC CHANGE AND POSSIBLE INFLUENCE ON MID-LATITUDE CLIMATE AND WEATHER: A US CLIVAR White Paper.
    Cohen J; Zhang X; Francis J; Jung T; Kwok R; Overland J; Ballinger T; Blackport R; Bhatt US; Chen H; Coumou D; Feldstein S; Handorf D; Hell M; Henderson G; Ionita M; Kretschmer M; Laliberte F; Lee S; Linderholm H; Maslowski W; Rigor I; Routson C; Screen J; Semmler T; Singh D; Smith D; Stroeve J; Taylor PC; Vihma T; Wang M; Wang S; Wu Y; Wendisch M; Yoon J
    US CLIVAR Rep; 2018 Mar; n/a():. PubMed ID: 31633127
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quasi-resonant circulation regimes and hemispheric synchronization of extreme weather in boreal summer.
    Coumou D; Petoukhov V; Rahmstorf S; Petri S; Schellnhuber HJ
    Proc Natl Acad Sci U S A; 2014 Aug; 111(34):12331-6. PubMed ID: 25114245
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of quasiresonant planetary wave dynamics in recent boreal spring-to-autumn extreme events.
    Petoukhov V; Petri S; Rahmstorf S; Coumou D; Kornhuber K; Schellnhuber HJ
    Proc Natl Acad Sci U S A; 2016 Jun; 113(25):6862-7. PubMed ID: 27274064
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Northern Hemisphere Stationary Waves in a Changing Climate.
    Wills RCJ; White RH; Levine XJ
    Curr Clim Change Rep; 2019; 5(4):372-389. PubMed ID: 31929963
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence linking rapid Arctic warming to mid-latitude weather patterns.
    Francis J; Skific N
    Philos Trans A Math Phys Eng Sci; 2015 Jul; 373(2045):. PubMed ID: 26032322
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quasiresonant amplification of planetary waves and recent Northern Hemisphere weather extremes.
    Petoukhov V; Rahmstorf S; Petri S; Schellnhuber HJ
    Proc Natl Acad Sci U S A; 2013 Apr; 110(14):5336-41. PubMed ID: 23457264
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Climate change. The weakening summer circulation in the Northern Hemisphere mid-latitudes.
    Coumou D; Lehmann J; Beckmann J
    Science; 2015 Apr; 348(6232):324-7. PubMed ID: 25765067
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A possible linkage of Eurasian heat wave and East Asian heavy rainfall in Relation to the Rapid Arctic warming.
    Nakamura T; Sato T
    Environ Res; 2022 Jun; 209():112881. PubMed ID: 35122744
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of mid-latitude storm tracks on hot, cold, dry and wet extremes.
    Lehmann J; Coumou D
    Sci Rep; 2015 Dec; 5():17491. PubMed ID: 26657163
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Weather regimes: the challenge in extended-range forecasting.
    Reinhold B
    Science; 1987 Jan; 235(4787):437-41. PubMed ID: 17810338
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Baroclinic waves in the northern hemisphere of Mars as observed by the MRO Mars Climate Sounder and the MGS Thermal Emission Spectrometer.
    Hinson DP; Wilson RJ
    Icarus; 2021 Mar; 357():. PubMed ID: 34646052
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantifying the influence of global warming on unprecedented extreme climate events.
    Diffenbaugh NS; Singh D; Mankin JS; Horton DE; Swain DL; Touma D; Charland A; Liu Y; Haugen M; Tsiang M; Rajaratnam B
    Proc Natl Acad Sci U S A; 2017 May; 114(19):4881-4886. PubMed ID: 28439005
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of Arctic amplification on mid-latitude summer circulation.
    Coumou D; Di Capua G; Vavrus S; Wang L; Wang S
    Nat Commun; 2018 Aug; 9(1):2959. PubMed ID: 30127423
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced jet stream waviness induced by suppressed tropical Pacific convection during boreal summer.
    Sun X; Ding Q; Wang SS; Topál D; Li Q; Castro C; Teng H; Luo R; Ding Y
    Nat Commun; 2022 Mar; 13(1):1288. PubMed ID: 35277484
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent enhanced high-summer North Atlantic Jet variability emerges from three-century context.
    Trouet V; Babst F; Meko M
    Nat Commun; 2018 Jan; 9(1):180. PubMed ID: 29330475
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Warm Arctic episodes linked with increased frequency of extreme winter weather in the United States.
    Cohen J; Pfeiffer K; Francis JA
    Nat Commun; 2018 Mar; 9(1):869. PubMed ID: 29535297
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dominant imprint of Rossby waves in the climate network.
    Wang Y; Gozolchiani A; Ashkenazy Y; Berezin Y; Guez O; Havlin S
    Phys Rev Lett; 2013 Sep; 111(13):138501. PubMed ID: 24116820
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial variations in the warming trend and the transition to more severe weather in midlatitudes.
    Estrada F; Kim D; Perron P
    Sci Rep; 2021 Jan; 11(1):145. PubMed ID: 33420406
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.