BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 28345694)

  • 41. Optimization-Based Design of Metal-Organic Framework Materials.
    Martin RL; Haranczyk M
    J Chem Theory Comput; 2013 Jun; 9(6):2816-25. PubMed ID: 26583871
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Facile Synthesis of Metal-Organic Layers with High Catalytic Performance toward Detoxification of a Chemical Warfare Agent Simulant.
    Zhao J; Chen R; Huang J; Wang F; Tao CA; Wang J
    ACS Appl Mater Interfaces; 2021 Sep; 13(34):40863-40871. PubMed ID: 34405983
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A Simple and Non-Destructive Method for Assessing the Incorporation of Bipyridine Dicarboxylates as Linkers within Metal-Organic Frameworks.
    Hendon CH; Bonnefoy J; Quadrelli EA; Canivet J; Chambers MB; Rousse G; Walsh A; Fontecave M; Mellot-Draznieks C
    Chemistry; 2016 Mar; 22(11):3713-8. PubMed ID: 26807710
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Mass spectrometric analysis of chemical warfare agents and their degradation products in soil and synthetic samples.
    D'Agostino PA; Hancock JR; Chenier CL
    Eur J Mass Spectrom (Chichester); 2003; 9(6):609-18. PubMed ID: 15100471
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Miniaturized low-cost ion mobility spectrometer for fast detection of chemical warfare agents.
    Zimmermann S; Barth S; Baether WK; Ringer J
    Anal Chem; 2008 Sep; 80(17):6671-6. PubMed ID: 18665610
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Catalytic glucose isomerization by porous coordination polymers with open metal sites.
    Akiyama G; Matsuda R; Sato H; Kitagawa S
    Chem Asian J; 2014 Oct; 9(10):2772-7. PubMed ID: 25080129
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Industrial applications of metal-organic frameworks.
    Czaja AU; Trukhan N; Müller U
    Chem Soc Rev; 2009 May; 38(5):1284-93. PubMed ID: 19384438
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Catalysis with Metal Nanoparticles Immobilized within the Pores of Metal-Organic Frameworks.
    Aijaz A; Xu Q
    J Phys Chem Lett; 2014 Apr; 5(8):1400-11. PubMed ID: 26269986
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Catalytic Processes for the Neutralization of Sulfur Mustard.
    Oheix E; Gravel E; Doris E
    Chemistry; 2021 Jan; 27(1):54-68. PubMed ID: 32876358
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Nanostructured Metal Oxides for Stoichiometric Degradation of Chemical Warfare Agents.
    Štengl V; Henych J; Janoš P; Skoumal M
    Rev Environ Contam Toxicol; 2016; 236():239-58. PubMed ID: 26423076
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Simultaneous Degradation and Removal of Cr
    Wang Z; Yang J; Li Y; Zhuang Q; Gu J
    Chemistry; 2017 Nov; 23(61):15415-15423. PubMed ID: 28809442
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Review of the U.S. Army's health risk assessments for oral exposure to six chemical-warfare agents. Introduction.
    J Toxicol Environ Health A; 2000 Mar; 59(5-6):281-526. PubMed ID: 10742829
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Photochromic metal-organic frameworks: reversible control of singlet oxygen generation.
    Park J; Feng D; Yuan S; Zhou HC
    Angew Chem Int Ed Engl; 2015 Jan; 54(2):430-5. PubMed ID: 25476702
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Development of haemostatic decontaminants for the treatment of wounds contaminated with chemical warfare agents. 1: evaluation of in vitro clotting efficacy in the presence of certain contaminants.
    Hall CA; Lydon HL; Dalton CH; Chipman JK; Graham JS; Chilcott RP
    J Appl Toxicol; 2015 May; 35(5):536-42. PubMed ID: 25131713
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Recent Progress in Metal-Organic Frameworks and Their Derived Nanostructures for Energy and Environmental Applications.
    Xie Z; Xu W; Cui X; Wang Y
    ChemSusChem; 2017 Apr; 10(8):1645-1663. PubMed ID: 28150903
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Emergency planning and preparedness for the deliberate release of toxic industrial chemicals.
    Russell D; Simpson J
    Clin Toxicol (Phila); 2010 Mar; 48(3):171-6. PubMed ID: 20334545
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Clathrate compounds of silica.
    Momma K
    J Phys Condens Matter; 2014 Mar; 26(10):103203. PubMed ID: 24552770
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Metal-Organic Frameworks for CO
    He H; Perman JA; Zhu G; Ma S
    Small; 2016 Dec; 12(46):6309-6324. PubMed ID: 27762496
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Applications of metal-organic frameworks in heterogeneous supramolecular catalysis.
    Liu J; Chen L; Cui H; Zhang J; Zhang L; Su CY
    Chem Soc Rev; 2014 Aug; 43(16):6011-61. PubMed ID: 24871268
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Niobium(V) saponite clay for the catalytic oxidative abatement of chemical warfare agents.
    Carniato F; Bisio C; Psaro R; Marchese L; Guidotti M
    Angew Chem Int Ed Engl; 2014 Sep; 53(38):10095-8. PubMed ID: 25056451
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.