BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1255 related articles for article (PubMed ID: 28345876)

  • 1. Engineering Cellular Microenvironments with Photo- and Enzymatically Responsive Hydrogels: Toward Biomimetic 3D Cell Culture Models.
    Tam RY; Smith LJ; Shoichet MS
    Acc Chem Res; 2017 Apr; 50(4):703-713. PubMed ID: 28345876
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Independently Tuning the Biochemical and Mechanical Properties of 3D Hyaluronan-Based Hydrogels with Oxime and Diels-Alder Chemistry to Culture Breast Cancer Spheroids.
    Baker AEG; Tam RY; Shoichet MS
    Biomacromolecules; 2017 Dec; 18(12):4373-4384. PubMed ID: 29040808
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dual-degradable and injectable hyaluronic acid hydrogel mimicking extracellular matrix for 3D culture of breast cancer MCF-7 cells.
    Suo A; Xu W; Wang Y; Sun T; Ji L; Qian J
    Carbohydr Polym; 2019 May; 211():336-348. PubMed ID: 30824098
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Material properties of disulfide-crosslinked hyaluronic acid hydrogels influence prostate cancer cell growth and metabolism.
    Tam NW; Chung D; Baldwin SJ; Simmons JR; Xu L; Rainey JK; Dellaire G; Frampton JP
    J Mater Chem B; 2020 Nov; 8(42):9718-9733. PubMed ID: 33015692
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design Strategies of Stimuli-Responsive Supramolecular Hydrogels Relying on Structural Analyses and Cell-Mimicking Approaches.
    Shigemitsu H; Hamachi I
    Acc Chem Res; 2017 Apr; 50(4):740-750. PubMed ID: 28252940
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hyaluronic acid-based hydrogels to study cancer cell behaviors.
    Goodarzi K; Rao SS
    J Mater Chem B; 2021 Aug; 9(31):6103-6115. PubMed ID: 34259709
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering three-dimensional cell mechanical microenvironment with hydrogels.
    Huang G; Wang L; Wang S; Han Y; Wu J; Zhang Q; Xu F; Lu TJ
    Biofabrication; 2012 Dec; 4(4):042001. PubMed ID: 23164720
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Designing degradable hydrogels for orthogonal control of cell microenvironments.
    Kharkar PM; Kiick KL; Kloxin AM
    Chem Soc Rev; 2013 Sep; 42(17):7335-72. PubMed ID: 23609001
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heparin-hyaluronic acid hydrogel in support of cellular activities of 3D encapsulated adipose derived stem cells.
    Gwon K; Kim E; Tae G
    Acta Biomater; 2017 Feb; 49():284-295. PubMed ID: 27919839
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo evaluation of MMP sensitive high-molecular weight HA-based hydrogels for bone tissue engineering.
    Kim J; Kim IS; Cho TH; Kim HC; Yoon SJ; Choi J; Park Y; Sun K; Hwang SJ
    J Biomed Mater Res A; 2010 Dec; 95(3):673-81. PubMed ID: 20725983
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of biomimetic cell-interactive substrates using hyaluronic acid hydrogels with tunable mechanical properties.
    Hachet E; Van Den Berghe H; Bayma E; Block MR; Auzély-Velty R
    Biomacromolecules; 2012 Jun; 13(6):1818-27. PubMed ID: 22559074
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of matrix characteristics on fibroblast proliferation in 3D gels.
    Bott K; Upton Z; Schrobback K; Ehrbar M; Hubbell JA; Lutolf MP; Rizzi SC
    Biomaterials; 2010 Nov; 31(32):8454-64. PubMed ID: 20684983
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D extracellular matrix interactions modulate tumour cell growth, invasion and angiogenesis in engineered tumour microenvironments.
    Taubenberger AV; Bray LJ; Haller B; Shaposhnykov A; Binner M; Freudenberg U; Guck J; Werner C
    Acta Biomater; 2016 May; 36():73-85. PubMed ID: 26971667
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Smart hydrogels with high tunability of stiffness as a biomimetic cell carrier.
    Zhao H; Xu K; Zhu P; Wang C; Chi Q
    Cell Biol Int; 2019 Feb; 43(2):84-97. PubMed ID: 30597680
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering the Cell Microenvironment Using Novel Photoresponsive Hydrogels.
    Dong Y; Jin G; Hong Y; Zhu H; Lu TJ; Xu F; Bai D; Lin M
    ACS Appl Mater Interfaces; 2018 Apr; 10(15):12374-12389. PubMed ID: 29537822
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of 3D matrix compositions on the efficacy of EGFR inhibition in pancreatic ductal adenocarcinoma cells.
    Ki CS; Shih H; Lin CC
    Biomacromolecules; 2013 Sep; 14(9):3017-26. PubMed ID: 23889305
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D bioprinting of hydrogel-based biomimetic microenvironments.
    Luo Y; Wei X; Huang P
    J Biomed Mater Res B Appl Biomater; 2019 Jul; 107(5):1695-1705. PubMed ID: 30508322
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advances in bioactive hydrogels to probe and direct cell fate.
    DeForest CA; Anseth KS
    Annu Rev Chem Biomol Eng; 2012; 3():421-44. PubMed ID: 22524507
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mediating the invasion of smooth muscle cells into a cell-responsive hydrogel under the existence of immune cells.
    Yu S; Duan Y; Zuo X; Chen X; Mao Z; Gao C
    Biomaterials; 2018 Oct; 180():193-205. PubMed ID: 30048909
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioengineered 3D brain tumor model to elucidate the effects of matrix stiffness on glioblastoma cell behavior using PEG-based hydrogels.
    Wang C; Tong X; Yang F
    Mol Pharm; 2014 Jul; 11(7):2115-25. PubMed ID: 24712441
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 63.