BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 28345903)

  • 1. Molecular Imprinting on Inorganic Nanozymes for Hundred-fold Enzyme Specificity.
    Zhang Z; Zhang X; Liu B; Liu J
    J Am Chem Soc; 2017 Apr; 139(15):5412-5419. PubMed ID: 28345903
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparing Selective Nanozymes by Molecular Imprinting.
    Li Y; Zhang X; Liu J
    Methods Mol Biol; 2021; 2359():223-232. PubMed ID: 34410673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecularly imprinted nanozymes with faster catalytic activity and better specificity.
    Zhang Z; Li Y; Zhang X; Liu J
    Nanoscale; 2019 Mar; 11(11):4854-4863. PubMed ID: 30820498
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular Imprinting on Nanozymes for Sensing Applications.
    Cardoso AR; Frasco MF; Serrano V; Fortunato E; Sales MGF
    Biosensors (Basel); 2021 May; 11(5):. PubMed ID: 34067985
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent development in the design of artificial enzymes through molecular imprinting technology.
    Tian R; Li Y; Xu J; Hou C; Luo Q; Liu J
    J Mater Chem B; 2022 Sep; 10(35):6590-6606. PubMed ID: 35748432
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unraveling the enzyme-like activity of heterogeneous single atom catalyst.
    Zhao C; Xiong C; Liu X; Qiao M; Li Z; Yuan T; Wang J; Qu Y; Wang X; Zhou F; Xu Q; Wang S; Chen M; Wang W; Li Y; Yao T; Wu Y; Li Y
    Chem Commun (Camb); 2019 Feb; 55(16):2285-2288. PubMed ID: 30694288
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multifunctional molecularly imprinted nanozymes with improved enrichment and specificity for organic and inorganic trace compounds.
    Ge Z; Zhao Y; Li J; Si Z; Du W; Su H
    Nanoscale; 2024 Feb; 16(5):2608-2620. PubMed ID: 38226643
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tuning the ATP-triggered pro-oxidant activity of iron oxide-based nanozyme towards an efficient antibacterial strategy.
    Vallabani NVS; Vinu A; Singh S; Karakoti A
    J Colloid Interface Sci; 2020 May; 567():154-164. PubMed ID: 32045737
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecularly Imprinted Nanozymes with Free Substrate Access for Catalyzing the Ligation of ssDNA Sequences.
    Guo Z; Luo Q; Liu Z
    Chemistry; 2022 Nov; 28(61):e202202052. PubMed ID: 35924666
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Filling in the Gaps between Nanozymes and Enzymes: Challenges and Opportunities.
    Zhou Y; Liu B; Yang R; Liu J
    Bioconjug Chem; 2017 Dec; 28(12):2903-2909. PubMed ID: 29172463
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Remarkably Efficient MnFe2 O4 -based Oxidase Nanozyme.
    Vernekar AA; Das T; Ghosh S; Mugesh G
    Chem Asian J; 2016 Jan; 11(1):72-6. PubMed ID: 26377634
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular Imprinting for Substrate Selectivity and Enhanced Activity of Enzyme Mimics.
    Zhang Z; Liu B; Liu J
    Small; 2017 Feb; 13(7):. PubMed ID: 27925383
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecularly imprinted peptide-based enzyme mimics with enhanced activity and specificity.
    Li J; Zhu M; Wang M; Qi W; Su R; He Z
    Soft Matter; 2020 Aug; 16(30):7033-7039. PubMed ID: 32667008
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Construction of DNA ligase-mimicking nanozymes
    He X; Luo Q; Guo Z; Li Y; Liu Z
    J Mater Chem B; 2022 Sep; 10(35):6716-6723. PubMed ID: 35133373
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecularly imprinted superparamagnetic iron oxide nanoparticles for rapid enrichment and separation of cholesterol.
    Zengin A; Yildirim E; Tamer U; Caykara T
    Analyst; 2013 Dec; 138(23):7238-45. PubMed ID: 24133677
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catalytically active nanomaterials: a promising candidate for artificial enzymes.
    Lin Y; Ren J; Qu X
    Acc Chem Res; 2014 Apr; 47(4):1097-105. PubMed ID: 24437921
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hierarchically Porous S/N Codoped Carbon Nanozymes with Enhanced Peroxidase-like Activity for Total Antioxidant Capacity Biosensing.
    Chen Y; Jiao L; Yan H; Xu W; Wu Y; Wang H; Gu W; Zhu C
    Anal Chem; 2020 Oct; 92(19):13518-13524. PubMed ID: 32869631
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nucleobase-mediated synthesis of nitrogen-doped carbon nanozymes as efficient peroxidase mimics.
    Lin S; Zhang Y; Cao W; Wang X; Qin L; Zhou M; Wei H
    Dalton Trans; 2019 Feb; 48(6):1993-1999. PubMed ID: 30652712
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface Modification of Co
    Huo J; Hao J; Mu J; Wang Y
    ACS Appl Bio Mater; 2021 Apr; 4(4):3443-3452. PubMed ID: 35014428
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catalytic Mechanisms of Nanozymes and Their Applications in Biomedicine.
    Dong H; Fan Y; Zhang W; Gu N; Zhang Y
    Bioconjug Chem; 2019 May; 30(5):1273-1296. PubMed ID: 30966739
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.