These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
317 related articles for article (PubMed ID: 28345904)
1. Ligand Selectivity Mechanism and Conformational Changes in Guanine Riboswitch by Molecular Dynamics Simulations and Free Energy Calculations. Hu G; Ma A; Wang J J Chem Inf Model; 2017 Apr; 57(4):918-928. PubMed ID: 28345904 [TBL] [Abstract][Full Text] [Related]
2. Ligand Binding Mechanism and Its Relationship with Conformational Changes in Adenine Riboswitch. Hu G; Li H; Xu S; Wang J Int J Mol Sci; 2020 Mar; 21(6):. PubMed ID: 32168940 [TBL] [Abstract][Full Text] [Related]
3. Binding site preorganization and ligand discrimination in the purine riboswitch. Sund J; Lind C; Åqvist J J Phys Chem B; 2015 Jan; 119(3):773-82. PubMed ID: 25014157 [TBL] [Abstract][Full Text] [Related]
4. Molecular dynamics simulation study of the binding of purine bases to the aptamer domain of the guanine sensing riboswitch. Villa A; Wöhnert J; Stock G Nucleic Acids Res; 2009 Aug; 37(14):4774-86. PubMed ID: 19515936 [TBL] [Abstract][Full Text] [Related]
5. Structural insights into the interactions of xpt riboswitch with novel guanine analogues: a molecular dynamics simulation study. Jain SS; Sonavane UB; Uppuladinne MV; McLaughlin EC; Wang W; Black S; Joshi RR J Biomol Struct Dyn; 2015; 33(2):234-43. PubMed ID: 24404773 [TBL] [Abstract][Full Text] [Related]
6. Tertiary Interactions in the Unbound Guanine-Sensing Riboswitch Focus Functional Conformational Variability on the Binding Site. Hanke CA; Gohlke H J Chem Inf Model; 2017 Nov; 57(11):2822-2832. PubMed ID: 29019403 [TBL] [Abstract][Full Text] [Related]
7. Using reweighted pulling simulations to characterize conformational changes in riboswitches. Di Palma F; Colizzi F; Bussi G Methods Enzymol; 2015; 553():139-62. PubMed ID: 25726464 [TBL] [Abstract][Full Text] [Related]
8. Effect of mutations on binding of ligands to guanine riboswitch probed by free energy perturbation and molecular dynamics simulations. Chen J; Wang X; Pang L; Zhang JZH; Zhu T Nucleic Acids Res; 2019 Jul; 47(13):6618-6631. PubMed ID: 31173143 [TBL] [Abstract][Full Text] [Related]
9. Exploring the Binding Process of Cognate Ligand to Add Adenine Riboswitch Aptamer by Using Explicit Solvent Molecular Dynamics (MD) Simulation. Bao L; Xiao Y Methods Mol Biol; 2023; 2568():103-122. PubMed ID: 36227564 [TBL] [Abstract][Full Text] [Related]
10. Molecular dynamics simulation of the binding process of ligands to the add adenine riboswitch aptamer. Bao L; Wang J; Xiao Y Phys Rev E; 2019 Aug; 100(2-1):022412. PubMed ID: 31574664 [TBL] [Abstract][Full Text] [Related]
11. Thermodynamic and kinetic characterization of ligand binding to the purine riboswitch aptamer domain. Gilbert SD; Stoddard CD; Wise SJ; Batey RT J Mol Biol; 2006 Jun; 359(3):754-68. PubMed ID: 16650860 [TBL] [Abstract][Full Text] [Related]
12. Role of ligand binding in structural organization of add A-riboswitch aptamer: a molecular dynamics simulation. Gong Z; Zhao Y; Chen C; Xiao Y J Biomol Struct Dyn; 2011 Oct; 29(2):403-16. PubMed ID: 21875158 [TBL] [Abstract][Full Text] [Related]
13. Using simulations and kinetic network models to reveal the dynamics and functions of riboswitches. Lin JC; Yoon J; Hyeon C; Thirumalai D Methods Enzymol; 2015; 553():235-58. PubMed ID: 25726468 [TBL] [Abstract][Full Text] [Related]
14. Heterogeneity and dynamics of the ligand recognition mode in purine-sensing riboswitches. Jain N; Zhao L; Liu JD; Xia T Biochemistry; 2010 May; 49(17):3703-14. PubMed ID: 20345178 [TBL] [Abstract][Full Text] [Related]
15. Structural insights into the interactions of flavin mononucleotide (FMN) and riboflavin with FMN riboswitch: a molecular dynamics simulation study. Wakchaure PD; Jana K; Ganguly B J Biomol Struct Dyn; 2020 Aug; 38(13):3856-3866. PubMed ID: 31498025 [TBL] [Abstract][Full Text] [Related]
16. The dynamic nature of RNA as key to understanding riboswitch mechanisms. Haller A; Soulière MF; Micura R Acc Chem Res; 2011 Dec; 44(12):1339-48. PubMed ID: 21678902 [TBL] [Abstract][Full Text] [Related]
17. Interplay of 'induced fit' and preorganization in the ligand induced folding of the aptamer domain of the guanine binding riboswitch. Noeske J; Buck J; Fürtig B; Nasiri HR; Schwalbe H; Wöhnert J Nucleic Acids Res; 2007; 35(2):572-83. PubMed ID: 17175531 [TBL] [Abstract][Full Text] [Related]
18. Ligand-mediated and tertiary interactions cooperatively stabilize the P1 region in the guanine-sensing riboswitch. Hanke CA; Gohlke H PLoS One; 2017; 12(6):e0179271. PubMed ID: 28640851 [TBL] [Abstract][Full Text] [Related]
19. Atomistic details of the ligand discrimination mechanism of S(MK)/SAM-III riboswitch. Priyakumar UD J Phys Chem B; 2010 Aug; 114(30):9920-5. PubMed ID: 20614931 [TBL] [Abstract][Full Text] [Related]
20. Force field dependence of riboswitch dynamics. Hanke CA; Gohlke H Methods Enzymol; 2015; 553():163-91. PubMed ID: 25726465 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]