These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 28345915)
1. Observation of pH-Induced Protein Reorientation at the Water Surface. Meister K; Roeters SJ; Paananen A; Woutersen S; Versluis J; Szilvay GR; Bakker HJ J Phys Chem Lett; 2017 Apr; 8(8):1772-1776. PubMed ID: 28345915 [TBL] [Abstract][Full Text] [Related]
2. Molecular Structure of Hydrophobins Studied with Site-Directed Mutagenesis and Vibrational Sum-Frequency Generation Spectroscopy. Meister K; Paananen A; Speet B; Lienemann M; Bakker HJ J Phys Chem B; 2017 Oct; 121(40):9398-9402. PubMed ID: 28967753 [TBL] [Abstract][Full Text] [Related]
3. The functional role of Cys3-Cys4 loop in hydrophobin HGFI. Niu B; Gong Y; Gao X; Xu H; Qiao M; Li W Amino Acids; 2014 Nov; 46(11):2615-25. PubMed ID: 25240738 [TBL] [Abstract][Full Text] [Related]
4. Self-assembled hydrophobin protein films at the air-water interface: structural analysis and molecular engineering. Szilvay GR; Paananen A; Laurikainen K; Vuorimaa E; Lemmetyinen H; Peltonen J; Linder MB Biochemistry; 2007 Mar; 46(9):2345-54. PubMed ID: 17297923 [TBL] [Abstract][Full Text] [Related]
5. Quantifying biomolecular hydrophobicity: Single molecule force spectroscopy of class II hydrophobins. Paananen A; Weich S; Szilvay GR; Leitner M; Tappura K; Ebner A J Biol Chem; 2021; 296():100728. PubMed ID: 33933454 [TBL] [Abstract][Full Text] [Related]
6. Probing Structural Changes during Self-assembly of Surface-Active Hydrophobin Proteins that Form Functional Amyloids in Fungi. Pham CLL; Rodríguez de Francisco B; Valsecchi I; Dazzoni R; Pillé A; Lo V; Ball SR; Cappai R; Wien F; Kwan AH; Guijarro JI; Sunde M J Mol Biol; 2018 Oct; 430(20):3784-3801. PubMed ID: 30096347 [TBL] [Abstract][Full Text] [Related]
7. Self-assembled bilayers from the protein HFBII hydrophobin: nature of the adhesion energy. Basheva ES; Kralchevsky PA; Danov KD; Stoyanov SD; Blijdenstein TB; Pelan EG; Lips A Langmuir; 2011 Apr; 27(8):4481-8. PubMed ID: 21413726 [TBL] [Abstract][Full Text] [Related]
8. Molecular simulation of hydrophobin adsorption at an oil-water interface. Cheung DL Langmuir; 2012 Jun; 28(23):8730-6. PubMed ID: 22591377 [TBL] [Abstract][Full Text] [Related]
9. Charge-based engineering of hydrophobin HFBI: effect on interfacial assembly and interactions. Lienemann M; Grunér MS; Paananen A; Siika-Aho M; Linder MB Biomacromolecules; 2015 Apr; 16(4):1283-92. PubMed ID: 25724119 [TBL] [Abstract][Full Text] [Related]
10. Structural characterization of the hydrophobin SC3, as a monomer and after self-assembly at hydrophobic/hydrophilic interfaces. de Vocht ML; Scholtmeijer K; van der Vegte EW; de Vries OM; Sonveaux N; Wösten HA; Ruysschaert JM; Hadziloannou G; Wessels JG; Robillard GT Biophys J; 1998 Apr; 74(4):2059-68. PubMed ID: 9545064 [TBL] [Abstract][Full Text] [Related]
11. Solution structure and interface-driven self-assembly of NC2, a new member of the Class II hydrophobin proteins. Ren Q; Kwan AH; Sunde M Proteins; 2014 Jun; 82(6):990-1003. PubMed ID: 24218020 [TBL] [Abstract][Full Text] [Related]
12. Hydrophobins, the fungal coat unravelled. Wösten HA; de Vocht ML Biochim Biophys Acta; 2000 Sep; 1469(2):79-86. PubMed ID: 10998570 [TBL] [Abstract][Full Text] [Related]
13. Kinetic and equilibrium aspects of adsorption and desorption of class II hydrophobins HFBI and HFBII at silicon oxynitride/water and air/water interfaces. Krivosheeva O; Dėdinaitė A; Linder MB; Tilton RD; Claesson PM Langmuir; 2013 Feb; 29(8):2683-91. PubMed ID: 23356719 [TBL] [Abstract][Full Text] [Related]
14. Structure Determination of Hen Egg-White Lysozyme Aggregates Adsorbed to Lipid/Water and Air/Water Interfaces. Strazdaite S; Navakauskas E; Kirschner J; Sneideris T; Niaura G Langmuir; 2020 May; 36(17):4766-4775. PubMed ID: 32251594 [TBL] [Abstract][Full Text] [Related]
15. Self-assembly of class II hydrophobins on polar surfaces. Grunér MS; Szilvay GR; Berglin M; Lienemann M; Laaksonen P; Linder MB Langmuir; 2012 Mar; 28(9):4293-300. PubMed ID: 22315927 [TBL] [Abstract][Full Text] [Related]
16. Spontaneous surface self-assembly in protein-surfactant mixtures: interactions between hydrophobin and ethoxylated polysorbate surfactants. Tucker IM; Petkov JT; Penfold J; Thomas RK; Li P; Cox AR; Hedges N; Webster JR J Phys Chem B; 2014 May; 118(18):4867-75. PubMed ID: 24738908 [TBL] [Abstract][Full Text] [Related]
17. Probing the self-assembly and the accompanying structural changes of hydrophobin SC3 on a hydrophobic surface by mass spectrometry. Wang X; Permentier HP; Rink R; Kruijtzer JA; Liskamp RM; Wösten HA; Poolman B; Robillard GT Biophys J; 2004 Sep; 87(3):1919-28. PubMed ID: 15345568 [TBL] [Abstract][Full Text] [Related]
18. Orientation and Conformation of Hydrophobin at the Oil-Water Interface: Insights from Molecular Dynamics Simulations. Yu H; Yang S; Chen Z; Xu Z; Quan X; Zhou J Langmuir; 2022 May; 38(19):6191-6200. PubMed ID: 35508911 [TBL] [Abstract][Full Text] [Related]
19. Spontaneous self-assembly of SC3 hydrophobins into nanorods in aqueous solution. Zykwinska A; Guillemette T; Bouchara JP; Cuenot S Biochim Biophys Acta; 2014 Jul; 1844(7):1231-7. PubMed ID: 24732577 [TBL] [Abstract][Full Text] [Related]
20. Investigation of the relationship between the rodlet formation and Cys3-Cys4 loop of the HGFI hydrophobin. Niu B; Li B; Wang H; Guo R; Xu H; Qiao M; Li W Colloids Surf B Biointerfaces; 2017 Feb; 150():344-351. PubMed ID: 27842929 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]