These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

812 related articles for article (PubMed ID: 28346401)

  • 1. Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion.
    Shimatani Z; Kashojiya S; Takayama M; Terada R; Arazoe T; Ishii H; Teramura H; Yamamoto T; Komatsu H; Miura K; Ezura H; Nishida K; Ariizumi T; Kondo A
    Nat Biotechnol; 2017 May; 35(5):441-443. PubMed ID: 28346401
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion.
    Zong Y; Wang Y; Li C; Zhang R; Chen K; Ran Y; Qiu JL; Wang D; Gao C
    Nat Biotechnol; 2017 May; 35(5):438-440. PubMed ID: 28244994
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly efficient RNA-guided base editing in mouse embryos.
    Kim K; Ryu SM; Kim ST; Baek G; Kim D; Lim K; Chung E; Kim S; Kim JS
    Nat Biotechnol; 2017 May; 35(5):435-437. PubMed ID: 28244995
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeted Base Editing with CRISPR-Deaminase in Tomato.
    Shimatani Z; Ariizumi T; Fujikura U; Kondo A; Ezura H; Nishida K
    Methods Mol Biol; 2019; 1917():297-307. PubMed ID: 30610645
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-wide target specificities of CRISPR RNA-guided programmable deaminases.
    Kim D; Lim K; Kim ST; Yoon SH; Kim K; Ryu SM; Kim JS
    Nat Biotechnol; 2017 May; 35(5):475-480. PubMed ID: 28398345
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New cytosine base editor for plant genome editing.
    Li Z; Xiong X; Li JF
    Sci China Life Sci; 2018 Dec; 61(12):1602-1603. PubMed ID: 30474781
    [No Abstract]   [Full Text] [Related]  

  • 7. Inheritance of co-edited genes by CRISPR-based targeted nucleotide substitutions in rice.
    Shimatani Z; Fujikura U; Ishii H; Matsui Y; Suzuki M; Ueke Y; Taoka KI; Terada R; Nishida K; Kondo A
    Plant Physiol Biochem; 2018 Oct; 131():78-83. PubMed ID: 29778643
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient CRISPR-mediated base editing in
    Rodrigues SD; Karimi M; Impens L; Van Lerberge E; Coussens G; Aesaert S; Rombaut D; Holtappels D; Ibrahim HMM; Van Montagu M; Wagemans J; Jacobs TB; De Coninck B; Pauwels L
    Proc Natl Acad Sci U S A; 2021 Jan; 118(2):. PubMed ID: 33443212
    [No Abstract]   [Full Text] [Related]  

  • 9. TALEN-Mediated Homologous Recombination Produces Site-Directed DNA Base Change and Herbicide-Resistant Rice.
    Li T; Liu B; Chen CY; Yang B
    J Genet Genomics; 2016 May; 43(5):297-305. PubMed ID: 27180265
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of CRISPR/Cas Genome Editing Technology for Targeted Mutagenesis in Rice.
    Xu R; Wei P; Yang J
    Methods Mol Biol; 2017; 1498():33-40. PubMed ID: 27709567
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeted AID-mediated mutagenesis (TAM) enables efficient genomic diversification in mammalian cells.
    Ma Y; Zhang J; Yin W; Zhang Z; Song Y; Chang X
    Nat Methods; 2016 Dec; 13(12):1029-1035. PubMed ID: 27723754
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characteristic and inheritance analysis of targeted mutagenesis mediated by genome editing in rice.
    Tang L; Li YK; Zhang D; Mao BG; Lv QM; Hu YY; Shao Y; Peng Y; Zhao BR; Xia ST
    Yi Chuan; 2016 Aug; 38(8):746-55. PubMed ID: 27531613
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR-dCas9 Mediated Cytosine Deaminase Base Editing in
    Yu S; Price MA; Wang Y; Liu Y; Guo Y; Ni X; Rosser SJ; Bi C; Wang M
    ACS Synth Biol; 2020 Jul; 9(7):1781-1789. PubMed ID: 32551562
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An efficient DNA- and selectable-marker-free genome-editing system using zygotes in rice.
    Toda E; Koiso N; Takebayashi A; Ichikawa M; Kiba T; Osakabe K; Osakabe Y; Sakakibara H; Kato N; Okamoto T
    Nat Plants; 2019 Apr; 5(4):363-368. PubMed ID: 30911123
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid generation of genetic diversity by multiplex CRISPR/Cas9 genome editing in rice.
    Shen L; Hua Y; Fu Y; Li J; Liu Q; Jiao X; Xin G; Wang J; Wang X; Yan C; Wang K
    Sci China Life Sci; 2017 May; 60(5):506-515. PubMed ID: 28349304
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions.
    Kim YB; Komor AC; Levy JM; Packer MS; Zhao KT; Liu DR
    Nat Biotechnol; 2017 Apr; 35(4):371-376. PubMed ID: 28191901
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRISPR/Cas9-based precise excision of SlHyPRP1 domain(s) to obtain salt stress-tolerant tomato.
    Tran MT; Doan DTH; Kim J; Song YJ; Sung YW; Das S; Kim EJ; Son GH; Kim SH; Van Vu T; Kim JY
    Plant Cell Rep; 2021 Jun; 40(6):999-1011. PubMed ID: 33074435
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple gene substitution by Target-AID base-editing technology in tomato.
    Hunziker J; Nishida K; Kondo A; Kishimoto S; Ariizumi T; Ezura H
    Sci Rep; 2020 Nov; 10(1):20471. PubMed ID: 33235312
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Robust genome editing of CRISPR-Cas9 at NAG PAMs in rice.
    Meng X; Hu X; Liu Q; Song X; Gao C; Li J; Wang K
    Sci China Life Sci; 2018 Jan; 61(1):122-125. PubMed ID: 29285711
    [No Abstract]   [Full Text] [Related]  

  • 20. Improving Plant Genome Editing with High-Fidelity xCas9 and Non-canonical PAM-Targeting Cas9-NG.
    Zhong Z; Sretenovic S; Ren Q; Yang L; Bao Y; Qi C; Yuan M; He Y; Liu S; Liu X; Wang J; Huang L; Wang Y; Baby D; Wang D; Zhang T; Qi Y; Zhang Y
    Mol Plant; 2019 Jul; 12(7):1027-1036. PubMed ID: 30928637
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 41.