These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1155 related articles for article (PubMed ID: 28346451)

  • 1. SC3: consensus clustering of single-cell RNA-seq data.
    Kiselev VY; Kirschner K; Schaub MT; Andrews T; Yiu A; Chandra T; Natarajan KN; Reik W; Barahona M; Green AR; Hemberg M
    Nat Methods; 2017 May; 14(5):483-486. PubMed ID: 28346451
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SC3-seq: a method for highly parallel and quantitative measurement of single-cell gene expression.
    Nakamura T; Yabuta Y; Okamoto I; Aramaki S; Yokobayashi S; Kurimoto K; Sekiguchi K; Nakagawa M; Yamamoto T; Saitou M
    Nucleic Acids Res; 2015 May; 43(9):e60. PubMed ID: 25722368
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulating multiple faceted variability in single cell RNA sequencing.
    Zhang X; Xu C; Yosef N
    Nat Commun; 2019 Jun; 10(1):2611. PubMed ID: 31197158
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational Analysis of Single-Cell RNA-Seq Data.
    Alessandrì L; Cordero F; Beccuti M; Arigoni M; Calogero RA
    Methods Mol Biol; 2021; 2284():289-301. PubMed ID: 33835449
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Data Analysis in Single-Cell Transcriptome Sequencing.
    Gao S
    Methods Mol Biol; 2018; 1754():311-326. PubMed ID: 29536451
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Bayesian mixture model for clustering droplet-based single-cell transcriptomic data from population studies.
    Sun Z; Chen L; Xin H; Jiang Y; Huang Q; Cillo AR; Tabib T; Kolls JK; Bruno TC; Lafyatis R; Vignali DAA; Chen K; Ding Y; Hu M; Chen W
    Nat Commun; 2019 Apr; 10(1):1649. PubMed ID: 30967541
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An accessible, interactive GenePattern Notebook for analysis and exploration of single-cell transcriptomic data.
    Mah CK; Wenzel AT; Juarez EF; Tabor T; Reich MM; Mesirov JP
    F1000Res; 2018; 7():1306. PubMed ID: 31316748
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accurate feature selection improves single-cell RNA-seq cell clustering.
    Su K; Yu T; Wu H
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33611426
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effective detection of variation in single-cell transcriptomes using MATQ-seq.
    Sheng K; Cao W; Niu Y; Deng Q; Zong C
    Nat Methods; 2017 Mar; 14(3):267-270. PubMed ID: 28092691
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Machine learning and statistical methods for clustering single-cell RNA-sequencing data.
    Petegrosso R; Li Z; Kuang R
    Brief Bioinform; 2020 Jul; 21(4):1209-1223. PubMed ID: 31243426
    [TBL] [Abstract][Full Text] [Related]  

  • 11. VPAC: Variational projection for accurate clustering of single-cell transcriptomic data.
    Chen S; Hua K; Cui H; Jiang R
    BMC Bioinformatics; 2019 May; 20(Suppl 7):0. PubMed ID: 31074382
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Omada: robust clustering of transcriptomes through multiple testing.
    Kariotis S; Tan PF; Lu H; Rhodes CJ; Wilkins MR; Lawrie A; Wang D
    Gigascience; 2024 Jan; 13():. PubMed ID: 38991852
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fast and accurate single-cell RNA-seq analysis by clustering of transcript-compatibility counts.
    Ntranos V; Kamath GM; Zhang JM; Pachter L; Tse DN
    Genome Biol; 2016 May; 17(1):112. PubMed ID: 27230763
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A critical assessment of clustering algorithms to improve cell clustering and identification in single-cell transcriptome study.
    Liang X; Cao L; Chen H; Wang L; Wang Y; Fu L; Tan X; Chen E; Ding Y; Tang J
    Brief Bioinform; 2023 Nov; 25(1):. PubMed ID: 38168839
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DIMM-SC: a Dirichlet mixture model for clustering droplet-based single cell transcriptomic data.
    Sun Z; Wang T; Deng K; Wang XF; Lafyatis R; Ding Y; Hu M; Chen W
    Bioinformatics; 2018 Jan; 34(1):139-146. PubMed ID: 29036318
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving replicability in single-cell RNA-Seq cell type discovery with Dune.
    Roux de Bézieux H; Street K; Fischer S; Van den Berge K; Chance R; Risso D; Gillis J; Ngai J; Purdom E; Dudoit S
    BMC Bioinformatics; 2024 May; 25(1):198. PubMed ID: 38789920
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Normalization for Single-Cell RNA-Seq Data Analysis.
    Bacher R
    Methods Mol Biol; 2019; 1935():11-23. PubMed ID: 30758817
    [TBL] [Abstract][Full Text] [Related]  

  • 18. mbkmeans: Fast clustering for single cell data using mini-batch k-means.
    Hicks SC; Liu R; Ni Y; Purdom E; Risso D
    PLoS Comput Biol; 2021 Jan; 17(1):e1008625. PubMed ID: 33497379
    [TBL] [Abstract][Full Text] [Related]  

  • 19. scDSSC: Deep Sparse Subspace Clustering for scRNA-seq Data.
    Wang H; Zhao J; Zheng C; Su Y
    PLoS Comput Biol; 2022 Dec; 18(12):e1010772. PubMed ID: 36534702
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-Cell RNA Sequencing Analysis: A Step-by-Step Overview.
    Slovin S; Carissimo A; Panariello F; Grimaldi A; Bouché V; Gambardella G; Cacchiarelli D
    Methods Mol Biol; 2021; 2284():343-365. PubMed ID: 33835452
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 58.