These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1155 related articles for article (PubMed ID: 28346451)

  • 21. A multitask clustering approach for single-cell RNA-seq analysis in Recessive Dystrophic Epidermolysis Bullosa.
    Zhang H; Lee CAA; Li Z; Garbe JR; Eide CR; Petegrosso R; Kuang R; Tolar J
    PLoS Comput Biol; 2018 Apr; 14(4):e1006053. PubMed ID: 29630593
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Single-cell RNA-seq clustering: datasets, models, and algorithms.
    Peng L; Tian X; Tian G; Xu J; Huang X; Weng Y; Yang J; Zhou L
    RNA Biol; 2020 Jun; 17(6):765-783. PubMed ID: 32116127
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rare Cell Type Detection.
    Jiang L
    Methods Mol Biol; 2019; 1935():79-89. PubMed ID: 30758820
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Model-based deep embedding for constrained clustering analysis of single cell RNA-seq data.
    Tian T; Zhang J; Lin X; Wei Z; Hakonarson H
    Nat Commun; 2021 Mar; 12(1):1873. PubMed ID: 33767149
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Systematic Comparison of High-throughput Single-Cell and Single-Nucleus Transcriptomes during Cardiomyocyte Differentiation.
    Selewa A; Dohn R; Eckart H; Lozano S; Xie B; Gauchat E; Elorbany R; Rhodes K; Burnett J; Gilad Y; Pott S; Basu A
    Sci Rep; 2020 Jan; 10(1):1535. PubMed ID: 32001747
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Using transfer learning from prior reference knowledge to improve the clustering of single-cell RNA-Seq data.
    Mieth B; Hockley JRF; Görnitz N; Vidovic MM; Müller KR; Gutteridge A; Ziemek D
    Sci Rep; 2019 Dec; 9(1):20353. PubMed ID: 31889137
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparative Analysis of Droplet-Based Ultra-High-Throughput Single-Cell RNA-Seq Systems.
    Zhang X; Li T; Liu F; Chen Y; Yao J; Li Z; Huang Y; Wang J
    Mol Cell; 2019 Jan; 73(1):130-142.e5. PubMed ID: 30472192
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identification of Cell Types from Single-Cell Transcriptomic Data.
    Shekhar K; Menon V
    Methods Mol Biol; 2019; 1935():45-77. PubMed ID: 30758819
    [TBL] [Abstract][Full Text] [Related]  

  • 29. scLM: Automatic Detection of Consensus Gene Clusters Across Multiple Single-cell Datasets.
    Song Q; Su J; Miller LD; Zhang W
    Genomics Proteomics Bioinformatics; 2021 Apr; 19(2):330-341. PubMed ID: 33359676
    [TBL] [Abstract][Full Text] [Related]  

  • 30. SAME-clustering: Single-cell Aggregated Clustering via Mixture Model Ensemble.
    Huh R; Yang Y; Jiang Y; Shen Y; Li Y
    Nucleic Acids Res; 2020 Jan; 48(1):86-95. PubMed ID: 31777938
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Exploring the single-cell RNA-seq analysis landscape with the scRNA-tools database.
    Zappia L; Phipson B; Oshlack A
    PLoS Comput Biol; 2018 Jun; 14(6):e1006245. PubMed ID: 29939984
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Review of single-cell RNA-seq data clustering for cell-type identification and characterization.
    Zhang S; Li X; Lin J; Lin Q; Wong KC
    RNA; 2023 May; 29(5):517-530. PubMed ID: 36737104
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Normalization of Single-Cell RNA-Seq Data.
    Risso D
    Methods Mol Biol; 2021; 2284():303-329. PubMed ID: 33835450
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Analysis of Technical and Biological Variability in Single-Cell RNA Sequencing.
    Kim B; Lee E; Kim JK
    Methods Mol Biol; 2019; 1935():25-43. PubMed ID: 30758818
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cell lineage inference from SNP and scRNA-Seq data.
    Ding J; Lin C; Bar-Joseph Z
    Nucleic Acids Res; 2019 Jun; 47(10):e56. PubMed ID: 30820578
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Single-Cell RNA Sequencing Analysis Using Fluidigm C1 Platform for Characterization of Heterogeneous Transcriptomes.
    Kim J; Marignani PA
    Methods Mol Biol; 2022; 2508():261-278. PubMed ID: 35737246
    [TBL] [Abstract][Full Text] [Related]  

  • 37. DTWscore: differential expression and cell clustering analysis for time-series single-cell RNA-seq data.
    Wang Z; Jin S; Liu G; Zhang X; Wang N; Wu D; Hu Y; Zhang C; Jiang Q; Xu L; Wang Y
    BMC Bioinformatics; 2017 May; 18(1):270. PubMed ID: 28535748
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Single-Cell RNAseq Clustering.
    Beccuti M; Calogero RA
    Methods Mol Biol; 2023; 2584():241-250. PubMed ID: 36495454
    [TBL] [Abstract][Full Text] [Related]  

  • 39. SuperCT: a supervised-learning framework for enhanced characterization of single-cell transcriptomic profiles.
    Xie P; Gao M; Wang C; Zhang J; Noel P; Yang C; Von Hoff D; Han H; Zhang MQ; Lin W
    Nucleic Acids Res; 2019 May; 47(8):e48. PubMed ID: 30799483
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Hybrid Clustering Algorithm for Identifying Cell Types from Single-Cell RNA-Seq Data.
    Zhu X; Li HD; Xu Y; Guo L; Wu FX; Duan G; Wang J
    Genes (Basel); 2019 Jan; 10(2):. PubMed ID: 30700040
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 58.