These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 28346458)

  • 1. Revealing the reaction mechanisms of Li-O
    Luo L; Liu B; Song S; Xu W; Zhang JG; Wang C
    Nat Nanotechnol; 2017 Jul; 12(6):535-539. PubMed ID: 28346458
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent advances in understanding of the mechanism and control of Li
    Lyu Z; Zhou Y; Dai W; Cui X; Lai M; Wang L; Huo F; Huang W; Hu Z; Chen W
    Chem Soc Rev; 2017 Oct; 46(19):6046-6072. PubMed ID: 28857099
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Operando observation of the gold-electrolyte interface in Li-O2 batteries.
    Gittleson FS; Ryu WH; Taylor AD
    ACS Appl Mater Interfaces; 2014 Nov; 6(21):19017-25. PubMed ID: 25318060
    [TBL] [Abstract][Full Text] [Related]  

  • 4. LiO
    Zhang X; Guo L; Gan L; Zhang Y; Wang J; Johnson LR; Bruce PG; Peng Z
    J Phys Chem Lett; 2017 May; 8(10):2334-2338. PubMed ID: 28481552
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tuning the Morphology of Li
    Yang Y; Liu W; Wu N; Wang X; Zhang T; Chen L; Zeng R; Wang Y; Lu J; Fu L; Xiao L; Zhuang L
    ACS Appl Mater Interfaces; 2017 Jun; 9(23):19800-19806. PubMed ID: 28537386
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clear Representation of Surface Pathway Reactions at Ag Nanowire Cathodes in All-Solid Li-O
    Wang H; Zhao N; Bi Z; Gao S; Dai Q; Yang T; Wang J; Jia Z; Peng Z; Huang J; Wan Y; Guo X
    ACS Appl Mater Interfaces; 2021 Aug; 13(33):39157-39164. PubMed ID: 34378380
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tuning the Morphology and Crystal Structure of Li2O2: A Graphene Model Electrode Study for Li-O2 Battery.
    Yang Y; Zhang T; Wang X; Chen L; Wu N; Liu W; Lu H; Xiao L; Fu L; Zhuang L
    ACS Appl Mater Interfaces; 2016 Aug; 8(33):21350-7. PubMed ID: 27459128
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relieving the "Sudden Death" of Li-O
    Guo L; Wang J; Gu F; Ma L; Zhao Z; Liu J; Peng Z
    ACS Appl Mater Interfaces; 2019 Apr; 11(16):14753-14758. PubMed ID: 30932476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aprotic Lithium-Oxygen Batteries Based on Nonsolid Discharge Products.
    Song LN; Zheng LJ; Wang XX; Kong DC; Wang YF; Wang Y; Wu JY; Sun Y; Xu JJ
    J Am Chem Soc; 2024 Jan; 146(2):1305-1317. PubMed ID: 38169369
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intensive Study on the Catalytical Behavior of N-Methylphenothiazine as a Soluble Mediator to Oxidize the Li
    Feng N; Mu X; Zhang X; He P; Zhou H
    ACS Appl Mater Interfaces; 2017 Feb; 9(4):3733-3739. PubMed ID: 28079362
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct Observation of Redox Mediator-Assisted Solution-Phase Discharging of Li-O
    Lee D; Park H; Ko Y; Park H; Hyeon T; Kang K; Park J
    J Am Chem Soc; 2019 May; 141(20):8047-8052. PubMed ID: 31066554
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-Energy Density Li-O
    Lee H; Lee DJ; Kim M; Kim H; Cho YS; Kwon HJ; Lee HC; Park CR; Im D
    ACS Appl Mater Interfaces; 2020 Apr; 12(15):17385-17395. PubMed ID: 32212667
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protocol of Electrochemical Test and Characterization of Aprotic Li-O2 Battery.
    Luo X; Wu T; Lu J; Amine K
    J Vis Exp; 2016 Jul; (113):. PubMed ID: 27501292
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic Changes in Charge Transfer Resistances during Cycling of Aprotic Li-O
    Morimoto K; Kusumoto T; Nishioka K; Kamiya K; Mukouyama Y; Nakanishi S
    ACS Appl Mater Interfaces; 2020 Sep; 12(38):42803-42810. PubMed ID: 32808758
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational Insights into Li
    Yi X; Liu X; Zhang P; Dou R; Wen Z; Zhou W
    J Phys Chem Lett; 2020 Mar; 11(6):2195-2202. PubMed ID: 31951140
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In situ AFM imaging of Li-O2 electrochemical reaction on highly oriented pyrolytic graphite with ether-based electrolyte.
    Wen R; Hong M; Byon HR
    J Am Chem Soc; 2013 Jul; 135(29):10870-6. PubMed ID: 23808397
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interfacial effects on lithium superoxide disproportionation in Li-O₂ batteries.
    Zhai D; Lau KC; Wang HH; Wen J; Miller DJ; Lu J; Kang F; Li B; Yang W; Gao J; Indacochea E; Curtiss LA; Amine K
    Nano Lett; 2015 Feb; 15(2):1041-6. PubMed ID: 25615912
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of LiO2 solubility in O2 reduction in aprotic solvents and its consequences for Li-O2 batteries.
    Johnson L; Li C; Liu Z; Chen Y; Freunberger SA; Ashok PC; Praveen BB; Dholakia K; Tarascon JM; Bruce PG
    Nat Chem; 2014 Dec; 6(12):1091-9. PubMed ID: 25411888
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms of Morphological Evolution of Li2O2 Particles during Electrochemical Growth.
    Mitchell RR; Gallant BM; Shao-Horn Y; Thompson CV
    J Phys Chem Lett; 2013 Apr; 4(7):1060-4. PubMed ID: 26282021
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlling Solution-Mediated Reaction Mechanisms of Oxygen Reduction Using Potential and Solvent for Aprotic Lithium-Oxygen Batteries.
    Kwabi DG; Tułodziecki M; Pour N; Itkis DM; Thompson CV; Shao-Horn Y
    J Phys Chem Lett; 2016 Apr; 7(7):1204-12. PubMed ID: 26949979
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.