BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 28346542)

  • 1. Unusual behaviour of phototrophic picoplankton in turbid waters.
    Somogyi B; Pálffy K; V-Balogh K; Botta-Dukát Z; Vörös L
    PLoS One; 2017; 12(3):e0174316. PubMed ID: 28346542
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Does turbidity induced by Carassius carassius limit phytoplankton growth? A mesocosm study.
    He H; Hu E; Yu J; Luo X; Li K; Jeppesen E; Liu Z
    Environ Sci Pollut Res Int; 2017 Feb; 24(5):5012-5018. PubMed ID: 28000069
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aerobic anoxygenic phototrophs are highly abundant in hypertrophic and polyhumic waters.
    Szabó-Tugyi N; Vörös L; V-Balogh K; Botta-Dukát Z; Bernát G; Schmera D; Somogyi B
    FEMS Microbiol Ecol; 2019 Aug; 95(8):. PubMed ID: 31291460
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Continental-scale effects of phytoplankton and non-phytoplankton turbidity on macrophyte occurrence in shallow lakes.
    Yuan LL
    Aquat Sci; 2021; 14():. PubMed ID: 34366634
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Seasonal Variation of Eutrophication in Some Lakes of Danube Delta Biosphere Reserve.
    Török L; Török Z; Carstea EM; Savastru D
    Water Environ Res; 2017 Jan; 89(1):86-94. PubMed ID: 28236829
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical properties of highly turbid shallow lakes with contrasting turbidity origins: the ecological and water management implications.
    Pérez GL; Lagomarsino L; Zagarese HE
    J Environ Manage; 2013 Nov; 130():207-20. PubMed ID: 24080330
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Picophytoplankton predominance in hypersaline lakes (Transylvanian Basin, Romania).
    Somogyi B; Vörös L; Pálffy K; Székely G; Bartha C; Keresztes ZG
    Extremophiles; 2014 Nov; 18(6):1075-84. PubMed ID: 25116056
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Remote estimation of cyanobacteria-dominance in inland waters.
    Shi K; Zhang Y; Li Y; Li L; Lv H; Liu X
    Water Res; 2015 Jan; 68():217-26. PubMed ID: 25462730
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Does differential phosphorus processing by plankton influence the ecological state of shallow lakes?
    Zhang X; Tong C; Taylor WD; Rudstam LG; Jeppesen E; Bolotov I; Bespalaya YV; Razlutskij V; Mei X; Liu Z
    Sci Total Environ; 2021 May; 769():144357. PubMed ID: 33477050
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial and temporal variations reveal the response of zooplankton to cyanobacteria.
    Jia J; Shi W; Chen Q; Lauridsen TL
    Harmful Algae; 2017 Apr; 64():63-73. PubMed ID: 28427573
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relative importance of phosphorus, fish biomass, and watershed land use as drivers of phytoplankton abundance in shallow lakes.
    Gorman MW; Zimmer KD; Herwig BR; Hanson MA; Wright RG; Vaughn SR; Younk JA
    Sci Total Environ; 2014 Jan; 466-467():849-55. PubMed ID: 23978583
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Is the future blue-green? A review of the current model predictions of how climate change could affect pelagic freshwater cyanobacteria.
    Elliott JA
    Water Res; 2012 Apr; 46(5):1364-71. PubMed ID: 22244968
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Primary production in a tropical large lake: the role of phytoplankton composition.
    Darchambeau F; Sarmento H; Descy JP
    Sci Total Environ; 2014 Mar; 473-474():178-88. PubMed ID: 24370692
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Colourful coexistence of red and green picocyanobacteria in lakes and seas.
    Stomp M; Huisman J; Vörös L; Pick FR; Laamanen M; Haverkamp T; Stal LJ
    Ecol Lett; 2007 Apr; 10(4):290-8. PubMed ID: 17355568
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The potential persistence of abundant submerged macrophyte and phytoplankton in a shallow system at very high nutrients loading: results from a mesocosm study.
    Zhu M; Zhang X
    Environ Sci Pollut Res Int; 2020 Aug; 27(23):29384-29390. PubMed ID: 32436099
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Individual and combined suppressive effects of submerged and floating-leaved macrophytes on algal blooms.
    Seto M; Takamura N; Iwasa Y
    J Theor Biol; 2013 Feb; 319():122-33. PubMed ID: 23219493
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A small omnivorous bitterling fish (Acheilognathus macropterus) facilitates dominance of cyanobacteria, rotifers and Limnodrilus in an outdoor mesocosm experiment.
    Yu J; Xia M; Kong M; He H; Guan B; Liu Z; Jeppesen E
    Environ Sci Pollut Res Int; 2020 Jul; 27(19):23862-23870. PubMed ID: 32301086
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photoautotrophic picoplankton - a review on their occurrence, role and diversity in Lake Balaton.
    Somogyi B; Felföldi T; Tóth LG; Bernát G; Vörös L
    Biol Futur; 2020 Dec; 71(4):371-382. PubMed ID: 34554456
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Are Bacterio- and Phytoplankton Community Compositions Related in Lakes Differing in Their Cyanobacteria Contribution and Physico-Chemical Properties?
    Kokociński M; Dziga D; Antosiak A; Soininen J
    Genes (Basel); 2021 Jun; 12(6):. PubMed ID: 34199405
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Factors influencing the pigment composition and dynamics of photoautotrophic picoplankton in shallow eutrophic lakes.
    Tamm M; Nõges T; Nõges P; Panksep K; Zingel P; Agasild H; Freiberg R; Hunt T; Tõnno I
    PLoS One; 2022; 17(5):e0267133. PubMed ID: 35617295
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.