These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 2834665)

  • 1. Cytochrome oxidase histochemistry reveals regional subdivisions in the rat periaqueductal gray matter.
    Conti F; Barbaresi P; Fabri M
    Neuroscience; 1988 Feb; 24(2):629-33. PubMed ID: 2834665
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The midbrain periaqueductal gray in the rat. I. Nuclear volume, cell number, density, orientation, and regional subdivisions.
    Beitz AJ
    J Comp Neurol; 1985 Jul; 237(4):445-59. PubMed ID: 4044895
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distinct patterns of activated neurons throughout the rat midbrain periaqueductal gray induced by chemical stimulation within its subdivisions.
    Sandkühler J; Herdegen T
    J Comp Neurol; 1995 Jul; 357(4):546-53. PubMed ID: 7673484
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immunocytochemical localization of substance P receptor in rat periaqueductal gray matter: a light and electron microscopic study.
    Barbaresi P
    J Comp Neurol; 1998 Sep; 398(4):473-90. PubMed ID: 9717704
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A metabolic map of cytochrome oxidase in the rat brain: histochemical, densitometric and biochemical studies.
    Hevner RF; Liu S; Wong-Riley MT
    Neuroscience; 1995 Mar; 65(2):313-42. PubMed ID: 7777153
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibitory and excitatory projections from the dorsal raphe nucleus to neurons in the dorsolateral periaqueductal gray matter in slices of midbrain maintained in vitro.
    Stezhka VV; Lovick TA
    Neuroscience; 1994 Sep; 62(1):177-87. PubMed ID: 7816199
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The ventrolateral periaqueductal gray projects to caudal brainstem depressor regions: a functional-anatomical and physiological study.
    Henderson LA; Keay KA; Bandler R
    Neuroscience; 1998 Jan; 82(1):201-21. PubMed ID: 9483515
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Collateralized projections from neurons in the rostral medulla to the nucleus locus coeruleus, the nucleus of the solitary tract and the periaqueductal gray.
    Van Bockstaele EJ; Aston-Jones G
    Neuroscience; 1992 Aug; 49(3):653-68. PubMed ID: 1380136
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The midbrain periaqueductal gray in the rat. II. A Golgi analysis.
    Beitz AJ; Shepard RD
    J Comp Neurol; 1985 Jul; 237(4):460-75. PubMed ID: 2413083
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The chemical architecture of the rat's periaqueductal gray based on acetylcholinesterase histochemistry: a quantitative and qualitative study.
    Ruiz-Torner A; Olucha-Bordonau F; Valverde-Navarro AA; Martínez-Soriano F
    J Chem Neuroanat; 2001 Jun; 21(4):295-312. PubMed ID: 11429271
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extensive projections from the midbrain periaqueductal gray to the caudal ventrolateral medulla: a retrograde and anterograde tracing study in the rat.
    Chen S; Aston-Jones G
    Neuroscience; 1996 Mar; 71(2):443-59. PubMed ID: 9053799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glutamate decarboxylase-immunoreactive neurons and terminals in the periaqueductal gray of the rat.
    Barbaresi P; Manfrini E
    Neuroscience; 1988 Oct; 27(1):183-91. PubMed ID: 3200438
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cytochrome oxidase immunohistochemistry in rat brain and dorsal root ganglia: visualization of enzyme in neuronal perikarya and in parvalbumin-positive neurons.
    Karmy G; Carr PA; Yamamoto T; Chan SH; Nagy JI
    Neuroscience; 1991; 40(3):825-39. PubMed ID: 1648184
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chewing suppresses the stress-induced increase in the number of pERK-immunoreactive cells in the periaqueductal grey.
    Yamada K; Narimatsu Y; Ono Y; Sasaguri K; Onozuka M; Kawata T; Yamamoto T
    Neurosci Lett; 2015 Jul; 599():43-8. PubMed ID: 25980997
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct projections from the midbrain periaqueductal gray and the dorsal raphe nucleus to the trigeminal sensory complex in the rat.
    Li YQ; Takada M; Shinonaga Y; Mizuno N
    Neuroscience; 1993 May; 54(2):431-43. PubMed ID: 7687754
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study of the origins of melanin-concentrating hormone and neuropeptide EI immunoreactive projections to the periaqueductal gray matter.
    Elias CF; Bittencourt JC
    Brain Res; 1997 May; 755(2):255-71. PubMed ID: 9175893
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Organization of medullary adrenergic and noradrenergic projections to the periaqueductal gray matter in the rat.
    Herbert H; Saper CB
    J Comp Neurol; 1992 Jan; 315(1):34-52. PubMed ID: 1371780
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Excitatory projections from the anterior hypothalamus to periaqueductal gray neurons that project to the medulla: a functional anatomical study.
    Semenenko FM; Lumb BM
    Neuroscience; 1999; 94(1):163-74. PubMed ID: 10613506
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Subregions of the periaqueductal gray topographically innervate the rostral ventral medulla in the rat.
    Van Bockstaele EJ; Aston-Jones G; Pieribone VA; Ennis M; Shipley MT
    J Comp Neurol; 1991 Jul; 309(3):305-27. PubMed ID: 1717516
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fos activation in hypothalamic neurons during cold or warm exposure: projections to periaqueductal gray matter.
    Yoshida K; Konishi M; Nagashima K; Saper CB; Kanosue K
    Neuroscience; 2005; 133(4):1039-46. PubMed ID: 15927405
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.