BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 28346703)

  • 1. Tunable GLUT-Hexose Binding and Transport via Modulation of Hexose C-3 Hydrogen-Bonding Capabilities.
    Kumar Kondapi VP; Soueidan OM; Cheeseman CI; West FG
    Chemistry; 2017 Jun; 23(33):8073-8081. PubMed ID: 28346703
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescent Hexose Conjugates Establish Stringent Stereochemical Requirement by GLUT5 for Recognition and Transport of Monosaccharides.
    Soueidan OM; Scully TW; Kaur J; Panigrahi R; Belovodskiy A; Do V; Matier CD; Lemieux MJ; Wuest F; Cheeseman C; West FG
    ACS Chem Biol; 2017 Apr; 12(4):1087-1094. PubMed ID: 28205432
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New fluorinated fructose analogs as selective probes of the hexose transporter protein GLUT5.
    Soueidan OM; Trayner BJ; Grant TN; Henderson JR; Wuest F; West FG; Cheeseman CI
    Org Biomol Chem; 2015 Jun; 13(23):6511-21. PubMed ID: 25975431
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression and function of hexose transporters GLUT1, GLUT2, and GLUT5 in breast cancer-effects of hypoxia.
    Hamann I; Krys D; Glubrecht D; Bouvet V; Marshall A; Vos L; Mackey JR; Wuest M; Wuest F
    FASEB J; 2018 Sep; 32(9):5104-5118. PubMed ID: 29913554
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular Imaging of GLUT1 and GLUT5 in Breast Cancer: A Multitracer Positron Emission Tomography Imaging Study in Mice.
    Wuest M; Hamann I; Bouvet V; Glubrecht D; Marshall A; Trayner B; Soueidan OM; Krys D; Wagner M; Cheeseman C; West F; Wuest F
    Mol Pharmacol; 2018 Feb; 93(2):79-89. PubMed ID: 29142019
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of high-affinity ligands and photoaffinity labels for the D-fructose transporter GLUT5.
    Yang J; Dowden J; Tatibouët A; Hatanaka Y; Holman GD
    Biochem J; 2002 Oct; 367(Pt 2):533-9. PubMed ID: 12119043
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of the structural requirements of sugar binding to the liver, brain and insulin-responsive glucose transporters expressed in oocytes.
    Colville CA; Seatter MJ; Gould GW
    Biochem J; 1993 Sep; 294 ( Pt 3)(Pt 3):753-60. PubMed ID: 8379930
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential control of the functional cell surface expression and content of hexose transporter GLUT-1 by glucose and glucose metabolism in murine fibroblasts.
    Ortiz PA; Haspel HC
    Biochem J; 1993 Oct; 295 ( Pt 1)(Pt 1):67-72. PubMed ID: 8216241
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hexose transporter mRNAs for GLUT4, GLUT5, and GLUT12 predominate in human muscle.
    Stuart CA; Yin D; Howell ME; Dykes RJ; Laffan JJ; Ferrando AA
    Am J Physiol Endocrinol Metab; 2006 Nov; 291(5):E1067-73. PubMed ID: 16803853
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression of human glucose transporters in Xenopus oocytes: kinetic characterization and substrate specificities of the erythrocyte, liver, and brain isoforms.
    Gould GW; Thomas HM; Jess TJ; Bell GI
    Biochemistry; 1991 May; 30(21):5139-45. PubMed ID: 2036379
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Barbiturates inhibit hexose transport in cultured mammalian cells and human erythrocytes and interact directly with purified GLUT-1.
    Honkanen RA; McBath H; Kushmerick C; Callender GE; Scarlata SF; Fenstermacher JD; Haspel HC
    Biochemistry; 1995 Jan; 34(2):535-44. PubMed ID: 7819247
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of the functional expression of hexose transporter GLUT-1 by glucose in murine fibroblasts: role of lysosomal degradation.
    Ortiz PA; Honkanen RA; Klingman DE; Haspel HC
    Biochemistry; 1992 Jun; 31(23):5386-93. PubMed ID: 1606164
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hexose transporter expression and function in mammalian spermatozoa: cellular localization and transport of hexoses and vitamin C.
    Angulo C; Rauch MC; Droppelmann A; Reyes AM; Slebe JC; Delgado-López F; Guaiquil VH; Vera JC; Concha II
    J Cell Biochem; 1998 Nov; 71(2):189-203. PubMed ID: 9779818
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GLUT3 inhibitor discovery through in silico ligand screening and in vivo validation in eukaryotic expression systems.
    Iancu CV; Bocci G; Ishtikhar M; Khamrai M; Oreb M; Oprea TI; Choe JY
    Sci Rep; 2022 Jan; 12(1):1429. PubMed ID: 35082341
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of a hydrophobic residue as a key determinant of fructose transport by the facilitative hexose transporter SLC2A7 (GLUT7).
    Manolescu A; Salas-Burgos AM; Fischbarg J; Cheeseman CI
    J Biol Chem; 2005 Dec; 280(52):42978-83. PubMed ID: 16186102
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards Selective Binding to the GLUT5 Transporter: Synthesis, Molecular Dynamics and In Vitro Evaluation of Novel C-3-Modified 2,5-Anhydro-D-mannitol Analogs.
    Rana N; Aziz MA; Oraby AK; Wuest M; Dufour J; Abouzid KAM; Wuest F; West FG
    Pharmaceutics; 2022 Apr; 14(4):. PubMed ID: 35456662
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of rat GLUT5 and functional analysis of chimeric proteins of GLUT1 glucose transporter and GLUT5 fructose transporter.
    Inukai K; Katagiri H; Takata K; Asano T; Anai M; Ishihara H; Nakazaki M; Kikuchi M; Yazaki Y; Oka Y
    Endocrinology; 1995 Nov; 136(11):4850-7. PubMed ID: 7588216
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure and mechanism of the mammalian fructose transporter GLUT5.
    Nomura N; Verdon G; Kang HJ; Shimamura T; Nomura Y; Sonoda Y; Hussien SA; Qureshi AA; Coincon M; Sato Y; Abe H; Nakada-Nakura Y; Hino T; Arakawa T; Kusano-Arai O; Iwanari H; Murata T; Kobayashi T; Hamakubo T; Kasahara M; Iwata S; Drew D
    Nature; 2015 Oct; 526(7573):397-401. PubMed ID: 26416735
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A highly conserved hydrophobic motif in the exofacial vestibule of fructose transporting SLC2A proteins acts as a critical determinant of their substrate selectivity.
    Manolescu AR; Augustin R; Moley K; Cheeseman C
    Mol Membr Biol; 2007; 24(5-6):455-63. PubMed ID: 17710649
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hexose permeation pathways in Plasmodium falciparum-infected erythrocytes.
    Woodrow CJ; Burchmore RJ; Krishna S
    Proc Natl Acad Sci U S A; 2000 Aug; 97(18):9931-6. PubMed ID: 10954735
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.