These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 28346995)

  • 41. Controlled optical characteristics of lanthanide doped upconversion nanoparticles for emerging applications.
    Ge X; Liu J; Sun L
    Dalton Trans; 2017 Dec; 46(48):16729-16737. PubMed ID: 29125162
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Dual-Wavelength Excited Intense Red Upconversion Luminescence from Er
    Zhao X; Wu Z; Yang Z; Yang X; Zhang Y; Yuan M; Han K; Song C; Jiang Z; Wang H; Li S; Xu X
    Nanomaterials (Basel); 2020 Jul; 10(8):. PubMed ID: 32731451
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Improvement Photocatalytic Activity of P25 by Modification with a Rare Earth-Free Upconversion Nanocrystal.
    Yin D; Liu Y; Zhao F; Zhang X; Zhang T; Wu C; Chang N; Chen Z
    J Nanosci Nanotechnol; 2018 May; 18(5):3448-3454. PubMed ID: 29442851
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Assessing the reproducibility and up-scaling of the synthesis of Er,Yb-doped NaYF
    Andresen E; Islam F; Prinz C; Gehrmann P; Licha K; Roik J; Recknagel S; Resch-Genger U
    Sci Rep; 2023 Feb; 13(1):2288. PubMed ID: 36759652
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Surface plasmon resonance of Au/Ag metals for the photoluminescence enhancement of lanthanide ion Ln
    Peng H; Li S; Xing J; Yang F; Wu A
    J Mater Chem B; 2023 Jun; 11(24):5238-5250. PubMed ID: 36477984
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Multicolor output and shape controlled synthesis of lanthanide-ion doped fluorides upconversion nanoparticles.
    Niu W; Wu S; Zhang S; Li J; Li L
    Dalton Trans; 2011 Apr; 40(13):3305-14. PubMed ID: 21359354
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Advances in highly doped upconversion nanoparticles.
    Wen S; Zhou J; Zheng K; Bednarkiewicz A; Liu X; Jin D
    Nat Commun; 2018 Jun; 9(1):2415. PubMed ID: 29925838
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Photosensitizer coated upconversion nanoparticles for triggering reactive oxygen species under 980 nm near-infrared excitation.
    Wu J; Du S; Wang Y
    J Mater Chem B; 2019 Dec; 7(46):7306-7313. PubMed ID: 31670352
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Huge enhancement of upconversion luminescence by dye/Nd
    Zhao F; Yin D; Wu C; Liu B; Chen T; Guo M; Huang K; Chen Z; Zhang Y
    Dalton Trans; 2017 Nov; 46(46):16180-16189. PubMed ID: 29182691
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Synthesis of fluorescent and magnetic bi-functional NaLuF4-based upconversion nanocrystals.
    Wang C; Yin D; Ouyang J; Song K; Liu B; Wu M
    J Nanosci Nanotechnol; 2014 Jul; 14(7):5232-7. PubMed ID: 24758009
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Sub-10 nm BaLaF
    Rao L; Lu W; Zeng T; Yi Z; Wang H; Liu H; Zeng S
    J Mater Chem B; 2014 Oct; 2(38):6527-6533. PubMed ID: 32261814
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Dual-Mode Luminescent Nanopaper Based on Ultrathin g-C3N4 Nanosheets Grafted with Rare-Earth Upconversion Nanoparticles.
    Zhao Y; Wei R; Feng X; Sun L; Liu P; Su Y; Shi L
    ACS Appl Mater Interfaces; 2016 Aug; 8(33):21555-62. PubMed ID: 27494116
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Facile synthesis of near-infrared-excited NaYF
    Zhao B; Li Y
    Talanta; 2018 Mar; 179():478-484. PubMed ID: 29310263
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Multifunctional BaYbF
    Li X; Yi Z; Xue Z; Zeng S; Liu H
    Mater Sci Eng C Mater Biol Appl; 2017 Jun; 75():510-516. PubMed ID: 28415493
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A near-infrared magnetic aptasensor for Ochratoxin A based on near-infrared upconversion nanoparticles and magnetic nanoparticles.
    Dai S; Wu S; Duan N; Wang Z
    Talanta; 2016 Sep; 158():246-253. PubMed ID: 27343602
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Upconversion of rare Earth nanomaterials.
    Sun LD; Dong H; Zhang PZ; Yan CH
    Annu Rev Phys Chem; 2015 Apr; 66():619-42. PubMed ID: 25648487
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Probing the Interior Crystal Quality in the Development of More Efficient and Smaller Upconversion Nanoparticles.
    Ma C; Xu X; Wang F; Zhou Z; Wen S; Liu D; Fang J; Lang CI; Jin D
    J Phys Chem Lett; 2016 Aug; 7(16):3252-8. PubMed ID: 27490090
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Rare Earth Hydroxide as a Precursor for Controlled Fabrication of Uniform β-NaYF₄ Nanoparticles: A Novel, Low Cost, and Facile Method.
    Xu L; Wang M; Chen Q; Yang J; Zheng W; Lv G; Quan Z; Li C
    Molecules; 2019 Jan; 24(2):. PubMed ID: 30669489
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Aminosilane Functionalization and Cytotoxicity Effects of Upconversion Nanoparticles Y
    Chavez DH; Juarez-Moreno K; Hirata GA
    Nanobiomedicine (Rij); 2016; 3():1. PubMed ID: 29942376
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Labeling and long-term tracking of bone marrow mesenchymal stem cells in vitro using NaYF4:Yb(3+),Er(3+) upconversion nanoparticles.
    Ma Y; Ji Y; You M; Wang S; Dong Y; Jin G; Lin M; Wang Q; Li A; Zhang X; Xu F
    Acta Biomater; 2016 Sep; 42():199-208. PubMed ID: 27435964
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.