These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 28347034)

  • 1. Multifunctional Carbon Nanostructures for Advanced Energy Storage Applications.
    Wang Y; Wei H; Lu Y; Wei S; Wujcik EK; Guo Z
    Nanomaterials (Basel); 2015 May; 5(2):755-777. PubMed ID: 28347034
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent Advances in Porous Carbon Materials for Electrochemical Energy Storage.
    Wang L; Hu X
    Chem Asian J; 2018 Jun; 13(12):1518-1529. PubMed ID: 29667345
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanocarbon networks for advanced rechargeable lithium batteries.
    Xin S; Guo YG; Wan LJ
    Acc Chem Res; 2012 Oct; 45(10):1759-69. PubMed ID: 22953777
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advances of Carbon Materials for Dual-Carbon Lithium-Ion Capacitors: A Review.
    Duan Y; Li C; Ye Z; Li H; Yang Y; Sui D; Lu Y
    Nanomaterials (Basel); 2022 Nov; 12(22):. PubMed ID: 36432240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low-dimensional carbon and MXene-based electrochemical capacitor electrodes.
    Yoon Y; Lee K; Lee H
    Nanotechnology; 2016 Apr; 27(17):172001. PubMed ID: 26988574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoarchitectured graphene-based supercapacitors for next-generation energy-storage applications.
    Salunkhe RR; Lee YH; Chang KH; Li JM; Simon P; Tang J; Torad NL; Hu CC; Yamauchi Y
    Chemistry; 2014 Oct; 20(43):13838-52. PubMed ID: 25251360
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon-Based Materials for Lithium-Ion Batteries, Electrochemical Capacitors, and Their Hybrid Devices.
    Yao F; Pham DT; Lee YH
    ChemSusChem; 2015 Jul; 8(14):2284-311. PubMed ID: 26140707
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent advances in graphene-based hybrid nanostructures for electrochemical energy storage.
    Xiong P; Zhu J; Zhang L; Wang X
    Nanoscale Horiz; 2016 Sep; 1(5):340-374. PubMed ID: 32260626
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 2020 Roadmap on Carbon Materials for Energy Storage and Conversion.
    Wu M; Liao J; Yu L; Lv R; Li P; Sun W; Tan R; Duan X; Zhang L; Li F; Kim J; Shin KH; Seok Park H; Zhang W; Guo Z; Wang H; Tang Y; Gorgolis G; Galiotis C; Ma J
    Chem Asian J; 2020 Apr; 15(7):995-1013. PubMed ID: 32073755
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graphene-based electrochemical energy conversion and storage: fuel cells, supercapacitors and lithium ion batteries.
    Hou J; Shao Y; Ellis MW; Moore RB; Yi B
    Phys Chem Chem Phys; 2011 Sep; 13(34):15384-402. PubMed ID: 21799983
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complex Hollow Nanostructures: Synthesis and Energy-Related Applications.
    Yu L; Hu H; Wu HB; Lou XW
    Adv Mater; 2017 Apr; 29(15):. PubMed ID: 28092123
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon nanomaterials for advanced energy conversion and storage.
    Dai L; Chang DW; Baek JB; Lu W
    Small; 2012 Apr; 8(8):1130-66. PubMed ID: 22383334
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mixed transition-metal oxides: design, synthesis, and energy-related applications.
    Yuan C; Wu HB; Xie Y; Lou XW
    Angew Chem Int Ed Engl; 2014 Feb; 53(6):1488-504. PubMed ID: 24382683
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 1D Carbon-Based Nanocomposites for Electrochemical Energy Storage.
    Shi C; Owusu KA; Xu X; Zhu T; Zhang G; Yang W; Mai L
    Small; 2019 Nov; 15(48):e1902348. PubMed ID: 31411000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent advances in graphene and its metal-oxide hybrid nanostructures for lithium-ion batteries.
    Srivastava M; Singh J; Kuila T; Layek RK; Kim NH; Lee JH
    Nanoscale; 2015 Mar; 7(11):4820-68. PubMed ID: 25695465
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Iron-oxide-supported nanocarbon in lithium-ion batteries, medical, catalytic, and environmental applications.
    Tuček J; Kemp KC; Kim KS; Zbořil R
    ACS Nano; 2014 Aug; 8(8):7571-612. PubMed ID: 25000534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graphene and graphene-based materials for energy storage applications.
    Zhu J; Yang D; Yin Z; Yan Q; Zhang H
    Small; 2014 Sep; 10(17):3480-98. PubMed ID: 24431122
    [TBL] [Abstract][Full Text] [Related]  

  • 19. From Carbon-Based Nanotubes to Nanocages for Advanced Energy Conversion and Storage.
    Wu Q; Yang L; Wang X; Hu Z
    Acc Chem Res; 2017 Feb; 50(2):435-444. PubMed ID: 28145692
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Porous graphene materials for advanced electrochemical energy storage and conversion devices.
    Han S; Wu D; Li S; Zhang F; Feng X
    Adv Mater; 2014 Feb; 26(6):849-64. PubMed ID: 24347321
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.