These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 28347044)

  • 21. Redox deposition of nanoscale metal oxides on carbon for next-generation electrochemical capacitors.
    Sassin MB; Chervin CN; Rolison DR; Long JW
    Acc Chem Res; 2013 May; 46(5):1062-74. PubMed ID: 22380783
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Bacteria in super capacitor electrode materials: a review].
    Wang L; Ran Y; Yuan Q; Hui M; Wang J
    Sheng Wu Gong Cheng Xue Bao; 2018 Oct; 34(10):1556-1566. PubMed ID: 30394023
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Exfoliated Mesoporous 2D Covalent Organic Frameworks for High-Rate Electrochemical Double-Layer Capacitors.
    Yusran Y; Li H; Guan X; Li D; Tang L; Xue M; Zhuang Z; Yan Y; Valtchev V; Qiu S; Fang Q
    Adv Mater; 2020 Feb; 32(8):e1907289. PubMed ID: 31944440
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Carbon-Based Materials for Lithium-Ion Batteries, Electrochemical Capacitors, and Their Hybrid Devices.
    Yao F; Pham DT; Lee YH
    ChemSusChem; 2015 Jul; 8(14):2284-311. PubMed ID: 26140707
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Carbon-based electrochemical capacitors.
    Ghosh A; Lee YH
    ChemSusChem; 2012 Mar; 5(3):480-99. PubMed ID: 22389329
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An Overview on the Development of Electrochemical Capacitors and Batteries - part II.
    Martins VL; Neves HR; Monje IE; Leite MM; Oliveira PFM; Antoniassi RM; Chauque S; Morais WG; Melo EC; Obana TT; Souza BL; Torresi RM
    An Acad Bras Cienc; 2020; 92(2):e20200800. PubMed ID: 32638868
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Immobilization of Polyiodide Redox Species in Porous Carbon for Battery-Like Electrodes in Eco-Friendly Hybrid Electrochemical Capacitors.
    Abbas Q; Fitzek H; Schröttner H; Dsoke S; Gollas B
    Nanomaterials (Basel); 2019 Oct; 9(10):. PubMed ID: 31623401
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tethered molecular redox capacitors for nanoconfinement-assisted electrochemical signal amplification.
    Kang M; Mun C; Jung HS; Ansah IB; Kim E; Yang H; Payne GF; Kim DH; Park SG
    Nanoscale; 2020 Feb; 12(6):3668-3676. PubMed ID: 31793610
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electrochemical Double-Layer Capacitor Energized by Adding an Ambipolar Organic Redox Radical into the Electrolyte.
    Hu L; Shi C; Guo K; Zhai T; Li H; Wang Y
    Angew Chem Int Ed Engl; 2018 Jul; 57(27):8214-8218. PubMed ID: 29797542
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multinuclear in situ magnetic resonance imaging of electrochemical double-layer capacitors.
    Ilott AJ; Trease NM; Grey CP; Jerschow A
    Nat Commun; 2014 Aug; 5():4536. PubMed ID: 25082481
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Gram-Scale Synthesis of Bimetallic ZIFs and Their Thermal Conversion to Nanoporous Carbon Materials.
    Marpaung F; Park T; Kim M; Yi JW; Lin J; Wang J; Ding B; Lim H; Konstantinov K; Yamauchi Y; Na J; Kim J
    Nanomaterials (Basel); 2019 Dec; 9(12):. PubMed ID: 31861071
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A review of electrode materials for electrochemical supercapacitors.
    Wang G; Zhang L; Zhang J
    Chem Soc Rev; 2012 Jan; 41(2):797-828. PubMed ID: 21779609
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Conductive MOF electrodes for stable supercapacitors with high areal capacitance.
    Sheberla D; Bachman JC; Elias JS; Sun CJ; Shao-Horn Y; Dincă M
    Nat Mater; 2017 Feb; 16(2):220-224. PubMed ID: 27723738
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nanostructured Conducting Polymers and Their Applications in Energy Storage Devices.
    Del Valle MA; Gacitúa MA; Hernández F; Luengo M; Hernández LA
    Polymers (Basel); 2023 Mar; 15(6):. PubMed ID: 36987228
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nanoporous carbon for electrochemical capacitive energy storage.
    Shao H; Wu YC; Lin Z; Taberna PL; Simon P
    Chem Soc Rev; 2020 May; 49(10):3005-3039. PubMed ID: 32285082
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ionic Liquids as Electrolytes for Electrochemical Double-Layer Capacitors: Structures that Optimize Specific Energy.
    Mousavi MP; Wilson BE; Kashefolgheta S; Anderson EL; He S; Bühlmann P; Stein A
    ACS Appl Mater Interfaces; 2016 Feb; 8(5):3396-406. PubMed ID: 26771378
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An overview of the applications of graphene-based materials in supercapacitors.
    Huang Y; Liang J; Chen Y
    Small; 2012 Jun; 8(12):1805-34. PubMed ID: 22514114
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Brief Overview of Electrochromic Materials and Related Devices: A Nanostructured Materials Perspective.
    Shchegolkov AV; Jang SH; Shchegolkov AV; Rodionov YV; Sukhova AO; Lipkin MS
    Nanomaterials (Basel); 2021 Sep; 11(9):. PubMed ID: 34578692
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pulse electrosynthesis of novel wormlike gadolinium oxide nanostructure and its nanocomposite with conjugated electroactive polymer as a hybrid and high efficient electrode material for energy storage device.
    Shiri HM; Ehsani A
    J Colloid Interface Sci; 2016 Dec; 484():70-76. PubMed ID: 27592187
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electrochemical supercapacitors from conducting polyaniline-graphene platforms.
    Ashok Kumar N; Baek JB
    Chem Commun (Camb); 2014 Jun; 50(48):6298-308. PubMed ID: 24797734
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.