These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 28347088)

  • 1. Mesoporous Transition Metal Oxides for Supercapacitors.
    Wang Y; Guo J; Wang T; Shao J; Wang D; Yang YW
    Nanomaterials (Basel); 2015 Oct; 5(4):1667-1689. PubMed ID: 28347088
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Current Research of Graphene-Based Nanocomposites and Their Application for Supercapacitors.
    Tiwari SK; Thakur AK; Adhikari A; Zhu Y; Wang N
    Nanomaterials (Basel); 2020 Oct; 10(10):. PubMed ID: 33081271
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent Development on Transition Metal Oxides-Based Core-Shell Structures for Boosted Energy Density Supercapacitors.
    Malavekar D; Pujari S; Jang S; Bachankar S; Kim JH
    Small; 2024 Apr; ():e2312179. PubMed ID: 38593336
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metal Oxide and Hydroxide-Based Aqueous Supercapacitors: From Charge Storage Mechanisms and Functional Electrode Engineering to Need-Tailored Devices.
    Nguyen T; Montemor MF
    Adv Sci (Weinh); 2019 May; 6(9):1801797. PubMed ID: 31065518
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The application of plasma technology for the preparation of supercapacitor electrode materials.
    Liu F; Zhang LH; Zhang Z; Zhou Y; Zhang Y; Huang JL; Fang Z
    Dalton Trans; 2024 Mar; 53(13):5749-5769. PubMed ID: 38441123
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural Engineering and Coupling of Two-Dimensional Transition Metal Compounds for Micro-Supercapacitor Electrodes.
    Haider WA; Tahir M; He L; Mirza HA; Zhu R; Han Y; Mai L
    ACS Cent Sci; 2020 Nov; 6(11):1901-1915. PubMed ID: 33274269
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-Temperature Decomposition and Oxidation of the Nerve Agent Simulant on Mesoporous Nickel Oxide and Cu-Doped Nickel Oxide.
    Leonard MB; Li T; Rodriguez EE
    ACS Appl Mater Interfaces; 2024 Jul; ():. PubMed ID: 38988229
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ZnO and MXenes as electrode materials for supercapacitor devices.
    Ammar AU; Yildirim ID; Bakan F; Erdem E
    Beilstein J Nanotechnol; 2021; 12():49-57. PubMed ID: 33520574
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low-Temperature, Universal Synthetic Route for Mesoporous Metal Oxides by Exploiting Synergistic Effect of Thermal Activation and Plasma.
    Kim KW; Seok H; Son S; Park SJ; Yang C; Lee D; Lee HC; Mun J; Yeom HJ; Yoon MY; Park B; Kim SH; Jo C; Moon HC; Kim T; Kim JK
    Adv Mater; 2024 May; 36(18):e2311809. PubMed ID: 38241612
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Revealing the Effect of the [CoO]
    Peng JL; Luo YL; Li JX; Huang JL; Xiao B; Xiao CF; Xiao K; Liu ZQ
    Nano Lett; 2024 Feb; 24(5):1687-1694. PubMed ID: 38253561
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acetate Ions Facilitated Immobilization of Highly Dispersed Transition Metal Oxide Nanoclusters in Mesoporous Silica.
    Wang N; Li X; Lian X; Zhuang Q; Wang J; Li J; Qian H; Miao K; Wang Y; Luo X; Feng G
    Inorg Chem; 2024 Mar; 63(9):4393-4403. PubMed ID: 38375640
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of valence-variable transition-metal-oxide-based nanomaterials in electrochemical analysis: A review.
    Xu H; Wang QY; Jiang M; Li SS
    Anal Chim Acta; 2024 Mar; 1295():342270. PubMed ID: 38355227
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correction: Ji et al. Mesoporous Cobalt Oxide (CoO
    Ji H; Ma Y; Cai Z; Yun M; Han J; Tong Z; Wang M; Suhr J; Xiao L; Jia S; Chen X
    Nanomaterials (Basel); 2024 Mar; 14(5):. PubMed ID: 38470811
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toward multicomponent mesoporous single-crystalline metal oxides.
    Ban M; Lee J
    Natl Sci Rev; 2024 May; 11(5):nwae104. PubMed ID: 38645384
    [No Abstract]   [Full Text] [Related]  

  • 15. Energy Storage Performance of Electrode Materials Derived from Manganese Metal-Organic Frameworks.
    Ryoo G; Kim SK; Lee DK; Kim YJ; Han YS; Jung KH
    Nanomaterials (Basel); 2024 Mar; 14(6):. PubMed ID: 38535651
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and Characteristics of Mesoporous Copper Cobalt Oxides Using the Inverse Micelle Method Fabricated for Supercapacitors.
    Heo SG; Park KT; Oh SJ; Seo SJ
    ACS Omega; 2024 Feb; 9(5):5338-5344. PubMed ID: 38343916
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molybdenum disulfide (MoS
    Nawaz S; Khan Y; Khalid S; Malik MA; Siddiq M
    RSC Adv; 2023 Sep; 13(41):28785-28797. PubMed ID: 37790101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ordered Mesoporous Electrodes for Sensing Applications.
    Scala-Benuzzi ML; Fernández SN; Giménez G; Ybarra G; Soler-Illia GJAA
    ACS Omega; 2023 Jul; 8(27):24128-24152. PubMed ID: 37457464
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Overview of the Emerging Technologies and Composite Materials for Supercapacitors in Energy Storage Applications.
    Adedoja OS; Sadiku ER; Hamam Y
    Polymers (Basel); 2023 May; 15(10):. PubMed ID: 37242851
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Binder-free NiO/CuO hybrid structure via ULPING (Ultra-short Laser Pulse for In-situ Nanostructure Generation) technique for supercapacitor electrode.
    Khot M; Shaik RS; Touseef W; Kiani A
    Sci Rep; 2023 Apr; 13(1):6975. PubMed ID: 37117400
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.