These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 2834719)

  • 21. Stereochemistry of the porphyrin-protein bond of cytochrome c. Stereochemical comparison of Rhodospirillum rubrum, yeast, and horse heart porphyrins c.
    Slama JT; Willson CG; Grimshaw CE; Rapoport H
    Biochemistry; 1977 Apr; 16(8):1750-4. PubMed ID: 192273
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mössbauer study of cytochrome c2 from Rhodospirillum rubrum. Sign of the product gxgygz of some low spin ferric heme proteins.
    Huynh BL; Emptage MH; Münck E
    Biochim Biophys Acta; 1978 Jun; 534(2):295-306. PubMed ID: 208633
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Interaction of horse cytochrome c with the photosynthetic reaction center of Rhodospirillum rubrum.
    Bosshard HR; Snozzi M; Bachofen R
    J Bioenerg Biomembr; 1987 Aug; 19(4):375-82. PubMed ID: 3040700
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The reaction of Rhodospirillum rubrum cytochrome c2 with iron hexacyanides.
    Wood FE; Cusanovich MA
    Bioinorg Chem; 1975 Jul; 4(4):337-52. PubMed ID: 238661
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Extended X-ray absorption fine structure study of Rhodospirillum rubrum and Rhodospirillum molischianum cytochromes c': relationship between heme stereochemistry and spin state.
    Korszun ZR; Bunker G; Khalid S; Scheidt WR; Cusanovich MA; Meyer TE
    Biochemistry; 1989 Feb; 28(4):1513-7. PubMed ID: 2541757
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mössbauer studies of cytochrome c' from Rhodospirillum rubrum.
    Emptage MH; Zimmermann R; Que L; Münck E; Hamilton WD; Orme-Johnson WH
    Biochim Biophys Acta; 1977 Nov; 495(1):12-23. PubMed ID: 199273
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparative solvent perturbation of horse heart cytochrome c and Rhodospirillum rubrum cytochrome c2.
    Schlauder GG; Kassner RJ
    J Biol Chem; 1979 May; 254(10):4110-3. PubMed ID: 220233
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Kinetics and motional dynamics of spin-labeled yeast iso-1-cytochrome c: 1. Stopped-flow electron paramagnetic resonance as a probe for protein folding/unfolding of the C-terminal helix spin-labeled at cysteine 102.
    Qu K; Vaughn JL; Sienkiewicz A; Scholes CP; Fetrow JS
    Biochemistry; 1997 Mar; 36(10):2884-97. PubMed ID: 9062118
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A denaturation-induced proton-uptake study of horse ferricytochrome c.
    Hartshorn RT; Moore GR
    Biochem J; 1989 Mar; 258(2):595-8. PubMed ID: 2539812
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reaction of Rhodospirillum rubrum cytochrome C2 with Pseudomonas cytochrome oxidase and cow cytochrome a.
    YAMANAKA T; OKUNUKI K; HORIO T
    Biochim Biophys Acta; 1963 May; 73():165-7. PubMed ID: 14002371
    [No Abstract]   [Full Text] [Related]  

  • 31. The kinetics of photooxidation of c-type cytochromes by Rhodospirillum rubrum reaction centers.
    Rickle GK; Cusanovich MA
    Arch Biochem Biophys; 1979 Oct; 197(2):589-98. PubMed ID: 41489
    [No Abstract]   [Full Text] [Related]  

  • 32. Preparation of cytochrome c2 from Rhodospirillum rubrum.
    Sponholtz DK; Brautigan DL; Loach PA; Margoliash E
    Anal Biochem; 1976 May; 72():255-60. PubMed ID: 182031
    [No Abstract]   [Full Text] [Related]  

  • 33. Pro----Ala-35 Rhodobacter capsulatus cytochrome c2 shows dynamic not structural differences. A 1H and 15N NMR study.
    Gooley PR; MacKenzie NE
    FEBS Lett; 1990 Jan; 260(2):225-8. PubMed ID: 2153585
    [TBL] [Abstract][Full Text] [Related]  

  • 34. NMR studies of the role of hydrogen bonding in the mechanism of triosephosphate isomerase.
    Harris TK; Abeygunawardana C; Mildvan AS
    Biochemistry; 1997 Dec; 36(48):14661-75. PubMed ID: 9398185
    [TBL] [Abstract][Full Text] [Related]  

  • 35. NMR determination of lysine pKa values in the Pol lambda lyase domain: mechanistic implications.
    Gao G; DeRose EF; Kirby TW; London RE
    Biochemistry; 2006 Feb; 45(6):1785-94. PubMed ID: 16460025
    [TBL] [Abstract][Full Text] [Related]  

  • 36. pH dependence of the redox potential of Pseudomonas aeruginosa cytochrome c-551.
    Moore GR; Pettigrew GW; Pitt RC; Williams RJ
    Biochim Biophys Acta; 1980 Apr; 590(2):261-71. PubMed ID: 6245686
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular cloning, sequencing and expression of cytochrome c2 from Rhodospirillum rubrum.
    Self SJ; Hunter CN; Leatherbarrow RJ
    Biochem J; 1990 Jan; 265(2):599-604. PubMed ID: 2154194
    [TBL] [Abstract][Full Text] [Related]  

  • 38. D-alpha-Hydroxyglutarate dehydrogenase of Rhodospirillum rubrum.
    Ebisuno T; Shigesada K; Katsuki H
    J Biochem; 1975 Dec; 78(6):1321-9. PubMed ID: 5424
    [TBL] [Abstract][Full Text] [Related]  

  • 39. NMR studies of the binding of 15N-labeled ligands to hemoproteins. pH-Dependent features of heme-bound C15N-resonances in cyanide complexes of myoglobin and cytochrome c and some implications for their heme environmental structures.
    Morishima I; Inubushi T
    FEBS Lett; 1977 Sep; 81(1):57-60. PubMed ID: 20335
    [No Abstract]   [Full Text] [Related]  

  • 40. Reduction kinetics of bacterial cytochromes c2.
    Wood FE; Post CB; Cusanovich MA
    Arch Biochem Biophys; 1977 Dec; 184(2):586-95. PubMed ID: 202201
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.