BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 28347245)

  • 1. Cancer stem cells: The potential role of autophagy, proteolysis, and cathepsins in glioblastoma stem cells.
    Bischof J; Westhoff MA; Wagner JE; Halatsch ME; Trentmann S; Knippschild U; Wirtz CR; Burster T
    Tumour Biol; 2017 Mar; 39(3):1010428317692227. PubMed ID: 28347245
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The status of the art of human malignant glioma management: the promising role of targeting tumor-initiating cells.
    Florio T; Barbieri F
    Drug Discov Today; 2012 Oct; 17(19-20):1103-10. PubMed ID: 22704957
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The emerging role of tumor-suppressive microRNA-218 in targeting glioblastoma stemness.
    Gao X; Jin W
    Cancer Lett; 2014 Oct; 353(1):25-31. PubMed ID: 25042866
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeting glioblastoma stem cells: cell surface markers.
    He J; Liu Y; Lubman DM
    Curr Med Chem; 2012; 19(35):6050-5. PubMed ID: 22963566
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glioblastoma cancer stem cells--from concept to clinical application.
    Stopschinski BE; Beier CP; Beier D
    Cancer Lett; 2013 Sep; 338(1):32-40. PubMed ID: 22668828
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Localization patterns of cathepsins K and X and their predictive value in glioblastoma.
    Breznik B; Limback C; Porcnik A; Blejec A; Krajnc MK; Bosnjak R; Kos J; Van Noorden CJF; Lah TT
    Radiol Oncol; 2018 Oct; 52(4):433-442. PubMed ID: 30367810
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Angiogenesis and hypoxia in glioblastoma: a focus on cancer stem cells.
    Mongiardi MP
    CNS Neurol Disord Drug Targets; 2012 Nov; 11(7):878-83. PubMed ID: 23131159
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cysteine cathepsins B, X and K expression in peri-arteriolar glioblastoma stem cell niches.
    Breznik B; Limbaeck Stokin C; Kos J; Khurshed M; Hira VVV; Bošnjak R; Lah TT; Van Noorden CJF
    J Mol Histol; 2018 Oct; 49(5):481-497. PubMed ID: 30046941
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glioblastoma and stem cells.
    Altaner C
    Neoplasma; 2008; 55(5):369-74. PubMed ID: 18665745
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeting ROR1 inhibits the self-renewal and invasive ability of glioblastoma stem cells.
    Jung EH; Lee HN; Han GY; Kim MJ; Kim CW
    Cell Biochem Funct; 2016 Apr; 34(3):149-57. PubMed ID: 26923195
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving the radiosensitivity of radioresistant and hypoxic glioblastoma.
    Sheehan JP; Shaffrey ME; Gupta B; Larner J; Rich JN; Park DM
    Future Oncol; 2010 Oct; 6(10):1591-601. PubMed ID: 21062158
    [TBL] [Abstract][Full Text] [Related]  

  • 12. FoxO3a functions as a key integrator of cellular signals that control glioblastoma stem-like cell differentiation and tumorigenicity.
    Sunayama J; Sato A; Matsuda K; Tachibana K; Watanabe E; Seino S; Suzuki K; Narita Y; Shibui S; Sakurada K; Kayama T; Tomiyama A; Kitanaka C
    Stem Cells; 2011 Sep; 29(9):1327-37. PubMed ID: 21793107
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The contribution of Notch signaling to glioblastoma via activation of cancer stem cell self-renewal: the role of the endothelial network.
    Gürsel DB; Berry N; Boockvar JA
    Neurosurgery; 2012 Feb; 70(2):N19-21. PubMed ID: 22251985
    [No Abstract]   [Full Text] [Related]  

  • 14. Methylation by EZH2 activates STAT3 in glioblastoma.
    Cancer Discov; 2013 Jul; 3(7):OF21. PubMed ID: 23847365
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neurotensin signaling regulates stem-like traits of glioblastoma stem cells through activation of IL-8/CXCR1/STAT3 pathway.
    Zhou J; Yi L; Ouyang Q; Xu L; Cui H; Xu M
    Cell Signal; 2014 Dec; 26(12):2896-902. PubMed ID: 25200966
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combined expressional analysis, bioinformatics and targeted proteomics identify new potential therapeutic targets in glioblastoma stem cells.
    Stangeland B; Mughal AA; Grieg Z; Sandberg CJ; Joel M; Nygård S; Meling T; Murrell W; Vik Mo EO; Langmoen IA
    Oncotarget; 2015 Sep; 6(28):26192-215. PubMed ID: 26295306
    [TBL] [Abstract][Full Text] [Related]  

  • 17. IQGAP1 protein specifies amplifying cancer cells in glioblastoma multiforme.
    Balenci L; Clarke ID; Dirks PB; Assard N; Ducray F; Jouvet A; Belin MF; Honnorat J; Baudier J
    Cancer Res; 2006 Sep; 66(18):9074-82. PubMed ID: 16982749
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The pleiotrophin-ALK axis is required for tumorigenicity of glioblastoma stem cells.
    Koyama-Nasu R; Haruta R; Nasu-Nishimura Y; Taniue K; Katou Y; Shirahige K; Todo T; Ino Y; Mukasa A; Saito N; Matsui M; Takahashi R; Hoshino-Okubo A; Sugano H; Manabe E; Funato K; Akiyama T
    Oncogene; 2014 Apr; 33(17):2236-44. PubMed ID: 23686309
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Overcoming therapeutic resistance in glioblastoma: the way forward.
    Osuka S; Van Meir EG
    J Clin Invest; 2017 Feb; 127(2):415-426. PubMed ID: 28145904
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation of A1 and A2B adenosine receptor activity: a new strategy to sensitise glioblastoma stem cells to chemotherapy.
    Daniele S; Zappelli E; Natali L; Martini C; Trincavelli ML
    Cell Death Dis; 2014 Nov; 5(11):e1539. PubMed ID: 25429616
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.