BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 28347253)

  • 41. PEGylated carboxymethyl chitosan/calcium phosphate hybrid anionic nanoparticles mediated hTERT siRNA delivery for anticancer therapy.
    Xie Y; Qiao H; Su Z; Chen M; Ping Q; Sun M
    Biomaterials; 2014 Sep; 35(27):7978-91. PubMed ID: 24939077
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effects of CD59 on antitumoral activities of phycocyanin from Spirulina platensis.
    Li B; Zhang X; Gao M; Chu X
    Biomed Pharmacother; 2005 Dec; 59(10):551-60. PubMed ID: 16271846
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Glycyrrhizin-modified O-carboxymethyl chitosan nanoparticles as drug vehicles targeting hepatocellular carcinoma.
    Shi L; Tang C; Yin C
    Biomaterials; 2012 Oct; 33(30):7594-604. PubMed ID: 22796165
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Novel polyelectrolyte carboxymethyl konjac glucomannan-chitosan nanoparticles for drug delivery. I. Physicochemical characterization of the carboxymethyl konjac glucomannan-chitosan nanoparticles.
    Du J; Sun R; Zhang S; Zhang LF; Xiong CD; Peng YX
    Biopolymers; 2005 May; 78(1):1-8. PubMed ID: 15739184
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Enhanced apoptotic and anticancer potential of paclitaxel loaded biodegradable nanoparticles based on chitosan.
    Gupta U; Sharma S; Khan I; Gothwal A; Sharma AK; Singh Y; Chourasia MK; Kumar V
    Int J Biol Macromol; 2017 May; 98():810-819. PubMed ID: 28189791
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Preparation, Characterization, and Optimization of Folic Acid-Chitosan-Methotrexate Core-Shell Nanoparticles by Box-Behnken Design for Tumor-Targeted Drug Delivery.
    Naghibi Beidokhti HR; Ghaffarzadegan R; Mirzakhanlouei S; Ghazizadeh L; Dorkoosh FA
    AAPS PharmSciTech; 2017 Jan; 18(1):115-129. PubMed ID: 26896317
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Chitosan magnetic nanoparticles for pH responsive Bortezomib release in cancer therapy.
    Unsoy G; Yalcin S; Khodadust R; Mutlu P; Onguru O; Gunduz U
    Biomed Pharmacother; 2014 Jun; 68(5):641-8. PubMed ID: 24880680
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Doxorubicin-incorporated nanoparticles composed of poly(ethylene glycol)-grafted carboxymethyl chitosan and antitumor activity against glioma cells in vitro.
    Jeong YI; Jin SG; Kim IY; Pei J; Wen M; Jung TY; Moon KS; Jung S
    Colloids Surf B Biointerfaces; 2010 Aug; 79(1):149-55. PubMed ID: 20427160
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Preparation of N,O-carboxymethyl chitosan nanoparticles as an insulin carrier.
    Lin CC; Lin CW
    Drug Deliv; 2009 Nov; 16(8):458-64. PubMed ID: 19839790
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Apoptosis Induction and Antimigratory Activity of Andrographolide Analog (3A.1)-Incorporated Self-Assembled Nanoparticles in Cancer Cells.
    Kansom T; Sajomsang W; Saeeng R; Charoensuksai P; Opanasopit P; Tonglairoum P
    AAPS PharmSciTech; 2018 Oct; 19(7):3123-3133. PubMed ID: 30117042
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Near-infrared light remote-controlled intracellular anti-cancer drug delivery using thermo/pH sensitive nanovehicle.
    Qin Y; Chen J; Bi Y; Xu X; Zhou H; Gao J; Hu Y; Zhao Y; Chai Z
    Acta Biomater; 2015 Apr; 17():201-9. PubMed ID: 25644449
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Development of drug-loaded chitosan-vanillin nanoparticles and its cytotoxicity against HT-29 cells.
    Li PW; Wang G; Yang ZM; Duan W; Peng Z; Kong LX; Wang QH
    Drug Deliv; 2016; 23(1):30-5. PubMed ID: 24712731
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Cromolyn chitosan nanoparticles as a novel protective approach for colorectal cancer.
    Motawi TK; El-Maraghy SA; ElMeshad AN; Nady OM; Hammam OA
    Chem Biol Interact; 2017 Sep; 275():1-12. PubMed ID: 28732690
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Carboxymethyl chitosan-poly(amidoamine) dendrimer core-shell nanoparticles for intracellular lysozyme delivery.
    Zhang X; Zhao J; Wen Y; Zhu C; Yang J; Yao F
    Carbohydr Polym; 2013 Nov; 98(2):1326-34. PubMed ID: 24053810
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Synthesis of Monodisperse Chitosan Nanoparticles and in Situ Drug Loading Using Active Microreactor.
    Kamat V; Marathe I; Ghormade V; Bodas D; Paknikar K
    ACS Appl Mater Interfaces; 2015 Oct; 7(41):22839-47. PubMed ID: 26448128
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Development of an inhalable, stimuli-responsive particulate system for delivery to deep lung tissue.
    Abbas Y; Azzazy HM; Tammam S; Lamprecht A; Ali ME; Schmidt A; Sollazzo S; Mathur S
    Colloids Surf B Biointerfaces; 2016 Oct; 146():19-30. PubMed ID: 27244047
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Self-assembled nanoparticles of modified-chitosan conjugates for the sustained release of DL-α-tocopherol.
    Quiñones JP; Gothelf KV; Kjems J; Yang C; Caballero AM; Schmidt C; Covas CP
    Carbohydr Polym; 2013 Jan; 92(1):856-64. PubMed ID: 23218376
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Carboxymethyl chitosan-soy protein complex nanoparticles for the encapsulation and controlled release of vitamin D₃.
    Teng Z; Luo Y; Wang Q
    Food Chem; 2013 Nov; 141(1):524-32. PubMed ID: 23768389
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Mono-N-carboxymethyl chitosan (MCC) and N-trimethyl chitosan (TMC) nanoparticles for non-invasive vaccine delivery.
    Sayin B; Somavarapu S; Li XW; Thanou M; Sesardic D; Alpar HO; Senel S
    Int J Pharm; 2008 Nov; 363(1-2):139-48. PubMed ID: 18662762
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The role of glycyrrhetinic acid modification on preparation and evaluation of quercetin-loaded chitosan-based self-aggregates.
    Du H; Liu M; Yang X; Zhai G
    J Colloid Interface Sci; 2015 Dec; 460():87-96. PubMed ID: 26319324
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.