These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 2834761)

  • 1. Porous hydroxyapatite as a bone graft substitute in cranial reconstruction: a histometric study.
    Holmes RE; Hagler HK
    Plast Reconstr Surg; 1988 May; 81(5):662-71. PubMed ID: 2834761
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Porous hydroxyapatite as a bone graft substitute in maxillary augmentation. An histometric study.
    Holmes R; Hagler H
    J Craniomaxillofac Surg; 1988 Jul; 16(5):199-205. PubMed ID: 2900254
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Porous hydroxylapatite as a bone graft substitute in mandibular contour augmentation: a histometric study.
    Holmes RE; Hagler HK
    J Oral Maxillofac Surg; 1987 May; 45(5):421-9. PubMed ID: 3033188
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Porous hydroxyapatite as a bone graft substitute in alveolar ridge augmentation: a histometric study.
    Holmes RE; Roser SM
    Int J Oral Maxillofac Surg; 1987 Dec; 16(6):718-28. PubMed ID: 2830350
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Porous hydroxyapatite as a bone graft substitute in diaphyseal defects: a histometric study.
    Holmes RE; Bucholz RW; Mooney V
    J Orthop Res; 1987; 5(1):114-21. PubMed ID: 3029358
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Porous hydroxyapatite as a bone-graft substitute in metaphyseal defects. A histometric study.
    Holmes RE; Bucholz RW; Mooney V
    J Bone Joint Surg Am; 1986 Jul; 68(6):904-11. PubMed ID: 3015975
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bony healing of large cranial and mandibular defects protected from soft-tissue interposition: A comparative study of spontaneous bone regeneration, osteoconduction, and cancellous autografting in dogs.
    Lemperle SM; Calhoun CJ; Curran RW; Holmes RE
    Plast Reconstr Surg; 1998 Mar; 101(3):660-72. PubMed ID: 9500382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A 1-year study of osteoinduction in hydroxyapatite-derived biomaterials in an adult sheep model: part II. Bioengineering implants to optimize bone replacement in reconstruction of cranial defects.
    Gosain AK; Riordan PA; Song L; Amarante MT; Kalantarian B; Nagy PG; Wilson CR; Toth JM; McIntyre BL
    Plast Reconstr Surg; 2004 Oct; 114(5):1155-63; discussion 1164-5. PubMed ID: 15457027
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydroxylapatite as a bone graft substitute in orthognathic surgery: histologic and histometric findings.
    Holmes RE; Wardrop RW; Wolford LM
    J Oral Maxillofac Surg; 1988 Aug; 46(8):661-71. PubMed ID: 3165120
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reconstruction of cranial defects with porous hydroxylapatite blocks.
    Waite PD; Morawetz RB; Zeiger HE; Pincock JL
    Neurosurgery; 1989 Aug; 25(2):214-7. PubMed ID: 2549443
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calvarial reconstruction in baboons with porous hydroxyapatite.
    Ripamonti U
    J Craniofac Surg; 1992 Nov; 3(3):149-59. PubMed ID: 1338494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coralline hydroxyapatite bone-graft substitutes in a canine diaphyseal defect model. Radiographic-histometric correlation.
    Sartoris DJ; Holmes RE; Bucholz RW; Mooney V; Resnick D
    Invest Radiol; 1987 Jul; 22(7):590-6. PubMed ID: 3623863
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tissue response to facial contour augmentation with dense and porous hydroxylapatite in rhesus monkeys.
    el Deeb M; Holmes RE
    J Oral Maxillofac Surg; 1989 Dec; 47(12):1282-9. PubMed ID: 2555468
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Geometry of porous hydroxyapatite implants influences osteogenesis in baboons (Papio ursinus).
    Magan A; Ripamonti U
    J Craniofac Surg; 1996 Jan; 7(1):71-8. PubMed ID: 9086906
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Properties of coralline hydroxyapatite and expanded polytetrafluoroethylene membrane in the immature craniofacial skeleton.
    Reedy BK; Pan F; Kim WS; Gannon FH; Krasinskas A; Bartlett SP
    Plast Reconstr Surg; 1999 Jan; 103(1):20-6. PubMed ID: 9915159
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of operative fit and hydroxyapatite coating on the mechanical and biological response to porous implants.
    Dalton JE; Cook SD; Thomas KA; Kay JF
    J Bone Joint Surg Am; 1995 Jan; 77(1):97-110. PubMed ID: 7822360
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of pore dimensions on bone ingrowth into porous hydroxylapatite blocks used as bone graft substitutes. A histometric study.
    Schliephake H; Neukam FW; Klosa D
    Int J Oral Maxillofac Surg; 1991 Feb; 20(1):53-8. PubMed ID: 1850445
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bone ingrowth and mechanical properties of coralline hydroxyapatite 1 yr after implantation.
    Martin RB; Chapman MW; Sharkey NA; Zissimos SL; Bay B; Shors EC
    Biomaterials; 1993 Apr; 14(5):341-8. PubMed ID: 8389612
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extraskeletal implantation of a porous hydroxyapatite ceramic.
    Piecuch JF
    J Dent Res; 1982 Dec; 61(12):1458-60. PubMed ID: 6294161
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced healing of large cranial defects by an osteoinductive protein in rabbits.
    Turk AE; Ishida K; Jensen JA; Wollman JS; Miller TA
    Plast Reconstr Surg; 1993 Sep; 92(4):593-600; discussion 601-2. PubMed ID: 8395062
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.