BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 28347756)

  • 1. Gaussian modelling characteristics changes derived from finger photoplethysmographic pulses during exercise and recovery.
    Wang A; Yang L; Wen W; Zhang S; Gu G; Zheng D
    Microvasc Res; 2018 Mar; 116():20-25. PubMed ID: 28347756
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantification of radial arterial pulse characteristics change during exercise and recovery.
    Wang A; Yang L; Wen W; Zhang S; Hao D; Khalid SG; Zheng D
    J Physiol Sci; 2018 Mar; 68(2):113-120. PubMed ID: 28028653
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of cardiovascular function from multi-Gaussian fitting of a finger photoplethysmogram.
    Couceiro R; Carvalho P; Paiva RP; Henriques J; Quintal I; Antunes M; Muehlsteff J; Eickholt C; Brinkmeyer C; Kelm M; Meyer C
    Physiol Meas; 2015 Sep; 36(9):1801-25. PubMed ID: 26235798
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of peripheral photoplethysmographic morphology changes induced during a hand-elevation study.
    Hickey M; Phillips JP; Kyriacou PA
    J Clin Monit Comput; 2016 Oct; 30(5):727-36. PubMed ID: 26318315
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gaussian Modelling Characteristics of Peripheral Arterial Pulse: Difference between Measurements from the Three Trimesters of Healthy Pregnancy.
    Li K; Zhang S; Yang L; Jiang H; Hao D; Zhang L; Zheng D
    J Healthc Eng; 2018; 2018():1308419. PubMed ID: 30405897
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photoplethysmographic characterization of vascular tone mediated changes in arterial pressure: an observational study.
    Tusman G; Acosta CM; Pulletz S; Böhm SH; Scandurra A; Arca JM; Madorno M; Sipmann FS
    J Clin Monit Comput; 2019 Oct; 33(5):815-824. PubMed ID: 30554338
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of local mild cold exposure on pulse transit time.
    Zhang XY; Zhang YT
    Physiol Meas; 2006 Jul; 27(7):649-60. PubMed ID: 16705262
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monitoring of reactive hyperemia using photoplethysmographic pulse amplitude and transit time.
    Selvaraj N; Jaryal AK; Santhosh J; Anand S; Deepak KK
    J Clin Monit Comput; 2009 Oct; 23(5):315-22. PubMed ID: 19728121
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characters available in photoplethysmogram for blood pressure estimation: beyond the pulse transit time.
    Li Y; Wang Z; Zhang L; Yang X; Song J
    Australas Phys Eng Sci Med; 2014 Jun; 37(2):367-76. PubMed ID: 24722801
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The differences in waveform between photoplethysmography pulse wave and radial pulse wave in movement station.
    Li K; Zhang S; Yang L; Luo Z; Gu G
    Biomed Mater Eng; 2014; 24(6):2657-64. PubMed ID: 25226969
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Finger and forehead photoplethysmography-derived pulse-pressure variation and the benefits of baseline correction.
    Sun S; Peeters WH; Bezemer R; Long X; Paulussen I; Aarts RM; Noordergraaf GJ
    J Clin Monit Comput; 2019 Feb; 33(1):65-75. PubMed ID: 29644558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The pulse wave analysis of normal pregnancy: investigating the gestational effects on photoplethysmographic signals.
    Su F; Li Z; Sun X; Han N; Wang L; Luo X
    Biomed Mater Eng; 2014; 24(1):209-19. PubMed ID: 24211900
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of Percutaneous Transluminal Angioplasty of Superficial Femoral Artery on Photoplethysmographic Pulse Transit Times.
    Peltokangas M; Suominen V; Vakhitov D; Korhonen J; Verho J; Mattila VM; Romsi P; Lekkala J; Vehkaoja A; Oksala N
    IEEE J Biomed Health Inform; 2019 May; 23(3):1058-1065. PubMed ID: 29994622
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Finger and ear photoplethysmogram waveform analysis by fitting with Gaussians.
    Rubins U
    Med Biol Eng Comput; 2008 Dec; 46(12):1271-6. PubMed ID: 18855034
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using time-frequency analysis of the photoplethysmographic waveform to detect the withdrawal of 900 mL of blood.
    Scully CG; Selvaraj N; Romberg FW; Wardhan R; Ryan J; Florian JP; Silverman DG; Shelley KH; Chon KH
    Anesth Analg; 2012 Jul; 115(1):74-81. PubMed ID: 22543068
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insight into the dicrotic notch in photoplethysmographic pulses from the finger tip of young adults.
    Shi P; Hu S; Zhu Y; Zheng J; Qiu Y; Cheang PY
    J Med Eng Technol; 2009; 33(8):628-33. PubMed ID: 19848856
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimal fiducial points for pulse rate variability analysis from forehead and finger photoplethysmographic signals.
    Peralta E; Lazaro J; Bailon R; Marozas V; Gil E
    Physiol Meas; 2019 Feb; 40(2):025007. PubMed ID: 30669123
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Asymmetric time-dependent model for the dynamic finger arterial pressure-volume relationship.
    Talts J; Raamat R; Jagomägi K
    Med Biol Eng Comput; 2006 Sep; 44(9):829-34. PubMed ID: 16960748
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The relationship between the photoplethysmographic waveform and systemic vascular resistance.
    Awad AA; Haddadin AS; Tantawy H; Badr TM; Stout RG; Silverman DG; Shelley KH
    J Clin Monit Comput; 2007 Dec; 21(6):365-72. PubMed ID: 17940842
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multivariate classification of systemic vascular resistance using photoplethysmography.
    Lee QY; Chan GS; Redmond SJ; Middleton PM; Steel E; Malouf P; Critoph C; Flynn G; O'Lone E; Lovell NH
    Physiol Meas; 2011 Aug; 32(8):1117-32. PubMed ID: 21693795
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.