BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 28348075)

  • 1. Computational and structural evidence for neurotransmitter-mediated modulation of the oligomeric states of human insulin in storage granules.
    Palivec V; Viola CM; Kozak M; Ganderton TR; Křížková K; Turkenburg JP; Haluŝková P; Žáková L; Jiráĉek J; Jungwirth P; Brzozowski AM
    J Biol Chem; 2017 May; 292(20):8342-8355. PubMed ID: 28348075
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms of stabilization of the insulin hexamer through allosteric ligand interactions.
    Rahuel-Clermont S; French CA; Kaarsholm NC; Dunn MF; Chou CI
    Biochemistry; 1997 May; 36(19):5837-45. PubMed ID: 9153424
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Can Arginine Inhibit Insulin Aggregation? A Combined Protein Crystallography, Capillary Electrophoresis, and Molecular Simulation Study.
    Březina K; Duboué-Dijon E; Palivec V; Jiráček J; Křížek T; Viola CM; Ganderton TR; Brzozowski AM; Jungwirth P
    J Phys Chem B; 2018 Nov; 122(44):10069-10076. PubMed ID: 30153414
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural asymmetry and half-site reactivity in the T to R allosteric transition of the insulin hexamer.
    Brzović PS; Choi WE; Borchardt D; Kaarsholm NC; Dunn MF
    Biochemistry; 1994 Nov; 33(44):13057-69. PubMed ID: 7947711
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pressure assisted partial filling affinity capillary electrophoresis employed for determination of binding constants of human insulin hexamer complexes with serotonin, dopamine, arginine, and phenol.
    Šolínová V; Žáková L; Jiráček J; Kašička V
    Anal Chim Acta; 2019 Apr; 1052():170-178. PubMed ID: 30685036
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Binding of phenol to R6 insulin hexamers.
    Berchtold H; Hilgenfeld R
    Biopolymers; 1999; 51(2):165-72. PubMed ID: 10397800
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insulin allosteric behavior: detection, identification, and quantification of allosteric states via 19F NMR.
    Bonaccio M; Ghaderi N; Borchardt D; Dunn MF
    Biochemistry; 2005 May; 44(21):7656-68. PubMed ID: 15909980
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ligand binding and thermostability of different allosteric states of the insulin zinc-hexamer.
    Huus K; Havelund S; Olsen HB; Sigurskjold BW; van de Weert M; Frokjaer S
    Biochemistry; 2006 Mar; 45(12):4014-24. PubMed ID: 16548529
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Zinc-ligand interactions modulate assembly and stability of the insulin hexamer -- a review.
    Dunn MF
    Biometals; 2005 Aug; 18(4):295-303. PubMed ID: 16158220
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biogenesis of the Insulin Secretory Granule in Health and Disease.
    Guest PC
    Adv Exp Med Biol; 2019; 1134():17-32. PubMed ID: 30919330
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carboxylate ions are strong allosteric ligands for the HisB10 sites of the R-state insulin hexamer.
    Huang ST; Choi WE; Bloom C; Leuenberger M; Dunn MF
    Biochemistry; 1997 Aug; 36(32):9878-88. PubMed ID: 9245420
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of insulin crystalline form in isolated β-cell secretory granules.
    Asai S; Moravcová J; Žáková L; Selicharová I; Hadravová R; Brzozowski AM; Nováček J; Jiráček J
    Open Biol; 2022 Dec; 12(12):220322. PubMed ID: 36541100
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of secretory granule maturation times in pancreatic islet β-cells by serial block-face electron microscopy.
    Rao A; McBride EL; Zhang G; Xu H; Cai T; Notkins AL; Aronova MA; Leapman RD
    J Struct Biol; 2020 Oct; 212(1):107584. PubMed ID: 32736074
    [TBL] [Abstract][Full Text] [Related]  

  • 14. β2-Syntrophin is a Cdk5 substrate that restrains the motility of insulin secretory granules.
    Schubert S; Knoch KP; Ouwendijk J; Mohammed S; Bodrov Y; Jäger M; Altkrüger A; Wegbrod C; Adams ME; Kim Y; Froehner SC; Jensen ON; Kalaidzidis Y; Solimena M
    PLoS One; 2010 Sep; 5(9):e12929. PubMed ID: 20886068
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic measurements of T----R structural transitions in insulin.
    Karataş Y; Krüger P; Wollmer A
    Biol Chem Hoppe Seyler; 1991 Dec; 372(12):1035-8. PubMed ID: 1789928
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coupling of metabolic, second messenger pathways and insulin granule dynamics in pancreatic beta-cells: a computational analysis.
    Fridlyand LE; Philipson LH
    Prog Biophys Mol Biol; 2011 Nov; 107(2):293-303. PubMed ID: 21920379
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Progress in Simulation Studies of Insulin Structure and Function.
    Gorai B; Vashisth H
    Front Endocrinol (Lausanne); 2022; 13():908724. PubMed ID: 35795141
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coupling of Insulin Secretion and Display of a Granule-resident Zinc Transporter ZnT8 on the Surface of Pancreatic Beta Cells.
    Huang Q; Merriman C; Zhang H; Fu D
    J Biol Chem; 2017 Mar; 292(10):4034-4043. PubMed ID: 28130446
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unraveling the symmetry ambiguity in a hexamer: calculation of the R6 human insulin structure.
    O'Donoghue SI; Chang X; Abseher R; Nilges M; Led JJ
    J Biomol NMR; 2000 Feb; 16(2):93-108. PubMed ID: 10723989
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hierarchical modeling of phenolic ligand binding to 2Zn--insulin hexamers.
    Birnbaum DT; Dodd SW; Saxberg BE; Varshavsky AD; Beals JM
    Biochemistry; 1996 Apr; 35(17):5366-78. PubMed ID: 8611526
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.