BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 28348135)

  • 1. BK Channels Mediate Synaptic Plasticity Underlying Habituation in Rats.
    Zaman T; De Oliveira C; Smoka M; Narla C; Poulter MO; Schmid S
    J Neurosci; 2017 Apr; 37(17):4540-4551. PubMed ID: 28348135
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synaptic depression and short-term habituation are located in the sensory part of the mammalian startle pathway.
    Simons-Weidenmaier NS; Weber M; Plappert CF; Pilz PK; Schmid S
    BMC Neurosci; 2006 May; 7():38. PubMed ID: 16684348
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synaptic plasticity in the acoustic startle pathway: the neuronal basis for short-term habituation?
    Weber M; Schnitzler HU; Schmid S
    Eur J Neurosci; 2002 Oct; 16(7):1325-32. PubMed ID: 12405993
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Group III metabotropic glutamate receptors inhibit startle-mediating giant neurons in the caudal pontine reticular nucleus but do not mediate synaptic depression/short-term habituation of startle.
    Schmid S; Brown T; Simons-Weidenmaier N; Weber M; Fendt M
    J Neurosci; 2010 Aug; 30(31):10422-30. PubMed ID: 20685984
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glycine inhibits startle-mediating neurons in the caudal pontine reticular formation but is not involved in synaptic depression underlying short-term habituation of startle.
    Geis HR; Schmid S
    Neurosci Res; 2011 Oct; 71(2):114-23. PubMed ID: 21726589
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Habituation of reflexive and motivated behavior in mice with deficient BK channel function.
    Typlt M; Mirkowski M; Azzopardi E; Ruth P; Pilz PK; Schmid S
    Front Integr Neurosci; 2013; 7():79. PubMed ID: 24312024
    [TBL] [Abstract][Full Text] [Related]  

  • 7. cacna2d3, a voltage-gated calcium channel subunit, functions in vertebrate habituation learning and the startle sensitivity threshold.
    Santistevan NJ; Nelson JC; Ortiz EA; Miller AH; Kenj Halabi D; Sippl ZA; Granato M; Grinblat Y
    PLoS One; 2022; 17(7):e0270903. PubMed ID: 35834485
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mesencephalic reticular formation lesions made after habituation training abolish long-term habituation of the acoustic startle response in rats.
    Jordan WP
    Behav Neurosci; 1989 Aug; 103(4):805-15. PubMed ID: 2765185
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Involvement of the human cerebellum in short-term and long-term habituation of the acoustic startle response: a serial PET study.
    Frings M; Awad N; Jentzen W; Dimitrova A; Kolb FP; Diener HC; Timmann D; Maschke M
    Clin Neurophysiol; 2006 Jun; 117(6):1290-300. PubMed ID: 16644276
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Medial cerebellum and long-term habituation of acoustic startle in rats.
    Leaton RN; Supple WF
    Behav Neurosci; 1991 Dec; 105(6):804-16. PubMed ID: 1663756
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Habituation of the acoustic startle response in rats after lesions in the mesencephalic reticular formation or in the inferior colliculus.
    Jordan WP; Leaton RN
    Behav Neurosci; 1983 Oct; 97(5):710-24. PubMed ID: 6639744
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glutamate-activated BK channel complexes formed with NMDA receptors.
    Zhang J; Guan X; Li Q; Meredith AL; Pan HL; Yan J
    Proc Natl Acad Sci U S A; 2018 Sep; 115(38):E9006-E9014. PubMed ID: 30181277
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Startle response models of sensorimotor gating and habituation deficits in schizophrenia.
    Geyer MA; Swerdlow NR; Mansbach RS; Braff DL
    Brain Res Bull; 1990 Sep; 25(3):485-98. PubMed ID: 2292046
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long- and short-term habituation of acoustic startle is not frequency specific in the rat.
    Jordan WP; Poore LH
    Physiol Behav; 1998 Feb; 63(4):643-9. PubMed ID: 9523910
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cognitive recovery by chronic activation of the large-conductance calcium-activated potassium channel in a mouse model of Alzheimer's disease.
    Wang L; Kang H; Li Y; Shui Y; Yamamoto R; Sugai T; Kato N
    Neuropharmacology; 2015 May; 92():8-15. PubMed ID: 25577958
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neuroplasticity in the acoustic startle reflex in larval zebrafish.
    López-Schier H
    Curr Opin Neurobiol; 2019 Feb; 54():134-139. PubMed ID: 30359930
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impaired startle prepulse inhibition and habituation in patients with schizotypal personality disorder.
    Cadenhead KS; Geyer MA; Braff DL
    Am J Psychiatry; 1993 Dec; 150(12):1862-7. PubMed ID: 8238643
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cerebellar vermis: essential for long-term habituation of the acoustic startle response.
    Leaton RN; Supple WF
    Science; 1986 Apr; 232(4749):513-5. PubMed ID: 3961494
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Startle habituation and sensorimotor gating in schizophrenia and related animal models.
    Geyer MA; Braff DL
    Schizophr Bull; 1987; 13(4):643-68. PubMed ID: 3438708
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Short-term and long-term habituation of the acoustic startle response in chronic decerebrate rats.
    Leaton RN; Cassella JV; Borszcz GS
    Behav Neurosci; 1985 Oct; 99(5):901-12. PubMed ID: 3843307
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.