BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 28348235)

  • 1. Live imaging of root-bacteria interactions in a microfluidics setup.
    Massalha H; Korenblum E; Malitsky S; Shapiro OH; Aharoni A
    Proc Natl Acad Sci U S A; 2017 Apr; 114(17):4549-4554. PubMed ID: 28348235
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tracking Root Interactions System (TRIS) Experiment and Quality Control.
    Massalha H; Korenblum E; Shapiro OH; Aharoni A
    Bio Protoc; 2019 Apr; 9(8):e3211. PubMed ID: 33655005
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bacillus subtilis Early Colonization of Arabidopsis thaliana Roots Involves Multiple Chemotaxis Receptors.
    Allard-Massicotte R; Tessier L; Lécuyer F; Lakshmanan V; Lucier JF; Garneau D; Caudwell L; Vlamakis H; Bais HP; Beauregard PB
    mBio; 2016 Nov; 7(6):. PubMed ID: 27899502
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real-time tracking of root hair nucleus morphodynamics using a microfluidic approach.
    Singh G; Pereira D; Baudrey S; Hoffmann E; Ryckelynck M; Asnacios A; Chabouté ME
    Plant J; 2021 Oct; 108(2):303-313. PubMed ID: 34562320
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production.
    Bais HP; Fall R; Vivanco JM
    Plant Physiol; 2004 Jan; 134(1):307-19. PubMed ID: 14684838
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional Imaging of Microbial Interactions With Tree Roots Using a Microfluidics Setup.
    Noirot-Gros MF; Shinde SV; Akins C; Johnson JL; Zerbs S; Wilton R; Kemner KM; Noirot P; Babnigg G
    Front Plant Sci; 2020; 11():408. PubMed ID: 32351525
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring plant-microbe interactions of the rhizobacteria Bacillus subtilis and Bacillus mycoides by use of the CRISPR-Cas9 system.
    Yi Y; Li Z; Song C; Kuipers OP
    Environ Microbiol; 2018 Dec; 20(12):4245-4260. PubMed ID: 30051589
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plant-environment microscopy tracks interactions of
    Liu Y; Patko D; Engelhardt I; George TS; Stanley-Wall NR; Ladmiral V; Ameduri B; Daniell TJ; Holden N; MacDonald MP; Dupuy LX
    Proc Natl Acad Sci U S A; 2021 Nov; 118(48):. PubMed ID: 34819371
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Imaging the Root Hair Morphology of Arabidopsis Seedlings in a Two-layer Microfluidic Platform.
    Aufrecht JA; Ryan JM; Hasim S; Allison DP; Nebenführ A; Doktycz MJ; Retterer ST
    J Vis Exp; 2017 Aug; (126):. PubMed ID: 28829431
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Qualitative and Quantitative Analyses of the Colonization Characteristics of Bacillus subtilis Strain NCD-2 on Cotton Root.
    Dong L; Guo Q; Wang P; Zhang X; Su Z; Zhao W; Lu X; Li S; Ma P
    Curr Microbiol; 2020 Aug; 77(8):1600-1609. PubMed ID: 32270206
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diversification of Bacillus subtilis during experimental evolution on Arabidopsis thaliana and the complementarity in root colonization of evolved subpopulations.
    Blake C; Nordgaard M; Maróti G; Kovács ÁT
    Environ Microbiol; 2021 Oct; 23(10):6122-6136. PubMed ID: 34296794
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cyanogenic pseudomonads influence multitrophic interactions in the rhizosphere.
    Rudrappa T; Splaine RE; Biedrzycki ML; Bais HP
    PLoS One; 2008 Apr; 3(4):e2073. PubMed ID: 18446201
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bacillus megaterium rhizobacteria promote growth and alter root-system architecture through an auxin- and ethylene-independent signaling mechanism in Arabidopsis thaliana.
    López-Bucio J; Campos-Cuevas JC; Hernández-Calderón E; Velásquez-Becerra C; Farías-Rodríguez R; Macías-Rodríguez LI; Valencia-Cantero E
    Mol Plant Microbe Interact; 2007 Feb; 20(2):207-17. PubMed ID: 17313171
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biocontrol of Bacillus subtilis against Fusarium verticillioides in vitro and at the maize root level.
    Cavaglieri L; Orlando J; Rodríguez MI; Chulze S; Etcheverry M
    Res Microbiol; 2005; 156(5-6):748-54. PubMed ID: 15950130
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microbial Interkingdom Interactions in Roots Promote Arabidopsis Survival.
    Durán P; Thiergart T; Garrido-Oter R; Agler M; Kemen E; Schulze-Lefert P; Hacquard S
    Cell; 2018 Nov; 175(4):973-983.e14. PubMed ID: 30388454
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sucrose triggers a novel signaling cascade promoting Bacillus subtilis rhizosphere colonization.
    Tian T; Sun B; Shi H; Gao T; He Y; Li Y; Liu Y; Li X; Zhang L; Li S; Wang Q; Chai Y
    ISME J; 2021 Sep; 15(9):2723-2737. PubMed ID: 33772107
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Endophytic colonisation of Bacillus subtilis in the roots of Robinia pseudoacacia L.
    Huang B; Lv C; Zhuang P; Zhang H; Fan L
    Plant Biol (Stuttg); 2011 Nov; 13(6):925-31. PubMed ID: 21972966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The RootChip: an integrated microfluidic chip for plant science.
    Grossmann G; Guo WJ; Ehrhardt DW; Frommer WB; Sit RV; Quake SR; Meier M
    Plant Cell; 2011 Dec; 23(12):4234-40. PubMed ID: 22186371
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Whole transcriptomic analysis of the plant-beneficial rhizobacterium Bacillus amyloliquefaciens SQR9 during enhanced biofilm formation regulated by maize root exudates.
    Zhang N; Yang D; Wang D; Miao Y; Shao J; Zhou X; Xu Z; Li Q; Feng H; Li S; Shen Q; Zhang R
    BMC Genomics; 2015 Sep; 16(1):685. PubMed ID: 26346121
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intraspecies variation in cotton border cell production: rhizosphere microbiome implications.
    Curlango-Rivera G; Huskey DA; Mostafa A; Kessler JO; Xiong Z; Hawes MC
    Am J Bot; 2013 Sep; 100(9):1706-12. PubMed ID: 23942085
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.