These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 28348235)

  • 41. Probing bacterial-fungal interactions at the single cell level.
    Stanley CE; Stöckli M; van Swaay D; Sabotič J; Kallio PT; Künzler M; deMello AJ; Aebi M
    Integr Biol (Camb); 2014 Oct; 6(10):935-45. PubMed ID: 25144657
    [TBL] [Abstract][Full Text] [Related]  

  • 42. PLANT MICROBIOME. Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa.
    Lebeis SL; Paredes SH; Lundberg DS; Breakfield N; Gehring J; McDonald M; Malfatti S; Glavina del Rio T; Jones CD; Tringe SG; Dangl JL
    Science; 2015 Aug; 349(6250):860-4. PubMed ID: 26184915
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Linking Jasmonic Acid Signaling, Root Exudates, and Rhizosphere Microbiomes.
    Carvalhais LC; Dennis PG; Badri DV; Kidd BN; Vivanco JM; Schenk PM
    Mol Plant Microbe Interact; 2015 Sep; 28(9):1049-58. PubMed ID: 26035128
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Phenotypic variation of Pseudomonas brassicacearum as a plant root-colonization strategy.
    Achouak W; Conrod S; Cohen V; Heulin T
    Mol Plant Microbe Interact; 2004 Aug; 17(8):872-9. PubMed ID: 15305608
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Chemotaxis signaling systems in model beneficial plant-bacteria associations.
    Scharf BE; Hynes MF; Alexandre GM
    Plant Mol Biol; 2016 Apr; 90(6):549-59. PubMed ID: 26797793
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Root border-like cells of Arabidopsis. Microscopical characterization and role in the interaction with rhizobacteria.
    Vicré M; Santaella C; Blanchet S; Gateau A; Driouich A
    Plant Physiol; 2005 Jun; 138(2):998-1008. PubMed ID: 15908608
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Efficient colonization of plant roots by the plant growth promoting bacterium Bacillus amyloliquefaciens FZB42, engineered to express green fluorescent protein.
    Fan B; Chen XH; Budiharjo A; Bleiss W; Vater J; Borriss R
    J Biotechnol; 2011 Feb; 151(4):303-11. PubMed ID: 21237217
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Transcriptional response machineries of Bacillus subtilis conducive to plant growth promotion.
    Hirooka K
    Biosci Biotechnol Biochem; 2014; 78(9):1471-84. PubMed ID: 25209494
    [TBL] [Abstract][Full Text] [Related]  

  • 49. How plants communicate using the underground information superhighway.
    Bais HP; Park SW; Weir TL; Callaway RM; Vivanco JM
    Trends Plant Sci; 2004 Jan; 9(1):26-32. PubMed ID: 14729216
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A Microfluidic-Like System (MLS) to Grow, Image, and Quantitatively Characterize Rigidity Sensing by Plant's Roots and Root Hair Cells.
    Pereira D; Alline T; Singh G; Chabouté ME; Asnacios A
    Methods Mol Biol; 2023; 2600():121-131. PubMed ID: 36587094
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Parallel genetic adaptation of
    Hu G; Wang Y; Blake C; Nordgaard M; Liu X; Wang B; Kovács ÁT
    Microb Genom; 2023 Jul; 9(7):. PubMed ID: 37466402
    [TBL] [Abstract][Full Text] [Related]  

  • 52.
    Maan H; Gilhar O; Porat Z; Kolodkin-Gal I
    Front Cell Infect Microbiol; 2021; 11():722778. PubMed ID: 34557426
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Utilization of mutants to analyze the interaction between Arabidopsis thaliana and its naturally root-associated Pseudomonas.
    Persello-Cartieaux F; David P; Sarrobert C; Thibaud MC; Achouak W; Robaglia C; Nussaume L
    Planta; 2001 Jan; 212(2):190-8. PubMed ID: 11216839
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Plant exudates promote PCB degradation by a rhodococcal rhizobacteria.
    Toussaint JP; Pham TT; Barriault D; Sylvestre M
    Appl Microbiol Biotechnol; 2012 Sep; 95(6):1589-603. PubMed ID: 22202970
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Arabidopsis thaliana model system reveals a continuum of responses to root endophyte colonization.
    Mandyam KG; Roe J; Jumpponen A
    Fungal Biol; 2013 Apr; 117(4):250-60. PubMed ID: 23622719
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Plant-Microbe Communication Enhances Auxin Biosynthesis by a Root-Associated Bacterium, Bacillus amyloliquefaciens SQR9.
    Liu Y; Chen L; Zhang N; Li Z; Zhang G; Xu Y; Shen Q; Zhang R
    Mol Plant Microbe Interact; 2016 Apr; 29(4):324-30. PubMed ID: 26808445
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A soil bacterium regulates plant acquisition of iron via deficiency-inducible mechanisms.
    Zhang H; Sun Y; Xie X; Kim MS; Dowd SE; Paré PW
    Plant J; 2009 May; 58(4):568-77. PubMed ID: 19154225
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Pattern Engineering of Living Bacterial Colonies Using Meniscus-Driven Fluidic Channels.
    Kantsler V; Ontañón-McDonald E; Kuey C; Ghanshyam MJ; Roffin MC; Asally M
    ACS Synth Biol; 2020 Jun; 9(6):1277-1283. PubMed ID: 32491836
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Enhanced rhizosphere colonization of beneficial Bacillus amyloliquefaciens SQR9 by pathogen infection.
    Liu Y; Zhang N; Qiu M; Feng H; Vivanco JM; Shen Q; Zhang R
    FEMS Microbiol Lett; 2014 Apr; 353(1):49-56. PubMed ID: 24612247
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The application of Arabidopsis thaliana in studying tripartite interactions among plants, beneficial fungal endophytes and biotrophic plant-parasitic nematodes.
    Martinuz A; Zewdu G; Ludwig N; Grundler F; Sikora RA; Schouten A
    Planta; 2015 Apr; 241(4):1015-25. PubMed ID: 25548000
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.