These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 28348235)

  • 61. Microscale kin discrimination in a famous soil bacterium.
    Gilbert OM
    Proc Natl Acad Sci U S A; 2015 Nov; 112(45):13757-8. PubMed ID: 26512099
    [No Abstract]   [Full Text] [Related]  

  • 62. Experimental evolution of
    Nordgaard M; Blake C; Maróti G; Hu G; Wang Y; Strube ML; Kovács ÁT
    iScience; 2022 Jun; 25(6):104406. PubMed ID: 35663012
    [No Abstract]   [Full Text] [Related]  

  • 63. Super-resolution imaging of bacteria in a microfluidics device.
    Cattoni DI; Fiche JB; Valeri A; Mignot T; Nöllmann M
    PLoS One; 2013; 8(10):e76268. PubMed ID: 24146850
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Leaf-FISH: Microscale Imaging of Bacterial Taxa on Phyllosphere.
    Peredo EL; Simmons SL
    Front Microbiol; 2017; 8():2669. PubMed ID: 29375531
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Increasing access to microfluidics for studying fungi and other branched biological structures.
    Millet LJ; Aufrecht J; Labbé J; Uehling J; Vilgalys R; Estes ML; Miquel Guennoc C; Deveau A; Olsson S; Bonito G; Doktycz MJ; Retterer ST
    Fungal Biol Biotechnol; 2019; 6():1. PubMed ID: 31198578
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Development of Microfluidic Devices to Study the Elongation Capability of Tip-growing Plant Cells in Extremely Small Spaces.
    Yanagisawa N; Sugimoto N; Higashiyama T; Sato Y
    J Vis Exp; 2018 May; (135):. PubMed ID: 29889188
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Influences of Adhesion Variability on the "Living" Dynamics of Filamentous Bacteria in Microfluidic Channels.
    Jahnke JP; Terrell JL; Smith AM; Cheng X; Stratis-Cullum DN
    Molecules; 2016 Jul; 21(8):. PubMed ID: 27483214
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Fabrication and use of the dual-flow-RootChip for the imaging of
    Stanley CE; Shrivastava J; Brugman R; Heinzelmann E; Frajs V; Bühler A; van Swaay D; Grossmann G
    Bio Protoc; 2018 Sep; 8(18):e3010. PubMed ID: 34395800
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Novel Insights into Microbial Behavior Gleaned Using Microfluidics.
    Takahashi K; Li X; Kunoh T; Nagasawa R; Takeshita N; Utada AS
    Microbes Environ; 2023; 38(5):. PubMed ID: 36948629
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Microfluidics-Based Bioassays and Imaging of Plant Cells.
    Yanagisawa N; Kozgunova E; Grossmann G; Geitmann A; Higashiyama T
    Plant Cell Physiol; 2021 Nov; 62(8):1239-1250. PubMed ID: 34027549
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Tracking the stochastic growth of bacterial populations in microfluidic droplets.
    Taylor D; Verdon N; Lomax P; Allen RJ; Titmuss S
    Phys Biol; 2022 Feb; 19(2):026003. PubMed ID: 35042205
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Microfluidics-Based Analysis of Contact-dependent Bacterial Interactions.
    Cooper R; Tsimring L; Hasty J
    Bio Protoc; 2018 Aug; 8(16):. PubMed ID: 30370317
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Microfluidics expanding the frontiers of microbial ecology.
    Rusconi R; Garren M; Stocker R
    Annu Rev Biophys; 2014; 43():65-91. PubMed ID: 24773019
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Creation of an electrokinetic characterization library for the detection and identification of biological cells.
    Coll De Peña A; Miller A; Lentz CJ; Hill N; Parthasarathy A; Hudson AO; Lapizco-Encinas BH
    Anal Bioanal Chem; 2020 Jun; 412(16):3935-3945. PubMed ID: 32322954
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Microfluidics for long-term single-cell time-lapse microscopy: Advances and applications.
    Allard P; Papazotos F; Potvin-Trottier L
    Front Bioeng Biotechnol; 2022; 10():968342. PubMed ID: 36312536
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Bacterial Ventures into Multicellularity: Collectivism through Individuality.
    van Vliet S; Ackermann M
    PLoS Biol; 2015 Jun; 13(6):e1002162. PubMed ID: 26038821
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Shining a light on the dark world of plant root-microbe interactions.
    Poole P
    Proc Natl Acad Sci U S A; 2017 Apr; 114(17):4281-4283. PubMed ID: 28377510
    [No Abstract]   [Full Text] [Related]  

  • 78. Coupling between distant biofilms and emergence of nutrient time-sharing.
    Liu J; Martinez-Corral R; Prindle A; Lee DD; Larkin J; Gabalda-Sagarra M; Garcia-Ojalvo J; Süel GM
    Science; 2017 May; 356(6338):638-642. PubMed ID: 28386026
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Embracing the unknown: disentangling the complexities of the soil microbiome.
    Fierer N
    Nat Rev Microbiol; 2017 Oct; 15(10):579-590. PubMed ID: 28824177
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Regulated cleavage and translocation of FERONIA control immunity in Arabidopsis roots.
    Chen J; Xu F; Qiang X; Liu H; Wang L; Jiang L; Li C; Wang B; Luan S; Wu D; Zhou F; Yu F
    Nat Plants; 2024 Oct; ():. PubMed ID: 39402220
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.