These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
269 related articles for article (PubMed ID: 28348243)
1. Frequency and potential dependence of reversible electrocatalytic hydrogen interconversion by [FeFe]-hydrogenases. Pandey K; Islam ST; Happe T; Armstrong FA Proc Natl Acad Sci U S A; 2017 Apr; 114(15):3843-3848. PubMed ID: 28348243 [TBL] [Abstract][Full Text] [Related]
2. Properties of the iron-sulfur cluster electron transfer relay in an [FeFe]-hydrogenase that is tuned for H Kisgeropoulos EC; Artz JH; Blahut M; Peters JW; King PW; Mulder DW J Biol Chem; 2024 Jun; 300(6):107292. PubMed ID: 38636659 [TBL] [Abstract][Full Text] [Related]
3. The roles of long-range proton-coupled electron transfer in the directionality and efficiency of [FeFe]-hydrogenases. Lampret O; Duan J; Hofmann E; Winkler M; Armstrong FA; Happe T Proc Natl Acad Sci U S A; 2020 Aug; 117(34):20520-20529. PubMed ID: 32796105 [TBL] [Abstract][Full Text] [Related]
4. EPR and FTIR analysis of the mechanism of H2 activation by [FeFe]-hydrogenase HydA1 from Chlamydomonas reinhardtii. Mulder DW; Ratzloff MW; Shepard EM; Byer AS; Noone SM; Peters JW; Broderick JB; King PW J Am Chem Soc; 2013 May; 135(18):6921-9. PubMed ID: 23578101 [TBL] [Abstract][Full Text] [Related]
5. The structure of the active site H-cluster of [FeFe] hydrogenase from the green alga Chlamydomonas reinhardtii studied by X-ray absorption spectroscopy. Stripp S; Sanganas O; Happe T; Haumann M Biochemistry; 2009 Jun; 48(22):5042-9. PubMed ID: 19397274 [TBL] [Abstract][Full Text] [Related]
6. New redox states observed in [FeFe] hydrogenases reveal redox coupling within the H-cluster. Adamska-Venkatesh A; Krawietz D; Siebel J; Weber K; Happe T; Reijerse E; Lubitz W J Am Chem Soc; 2014 Aug; 136(32):11339-46. PubMed ID: 25025613 [TBL] [Abstract][Full Text] [Related]
7. Investigations on the role of proton-coupled electron transfer in hydrogen activation by [FeFe]-hydrogenase. Mulder DW; Ratzloff MW; Bruschi M; Greco C; Koonce E; Peters JW; King PW J Am Chem Soc; 2014 Oct; 136(43):15394-402. PubMed ID: 25286239 [TBL] [Abstract][Full Text] [Related]
8. CO-Bridged H-Cluster Intermediates in the Catalytic Mechanism of [FeFe]-Hydrogenase CaI. Ratzloff MW; Artz JH; Mulder DW; Collins RT; Furtak TE; King PW J Am Chem Soc; 2018 Jun; 140(24):7623-7628. PubMed ID: 29792026 [TBL] [Abstract][Full Text] [Related]
9. Protonation/reduction dynamics at the [4Fe-4S] cluster of the hydrogen-forming cofactor in [FeFe]-hydrogenases. Senger M; Mebs S; Duan J; Shulenina O; Laun K; Kertess L; Wittkamp F; Apfel UP; Happe T; Winkler M; Haumann M; Stripp ST Phys Chem Chem Phys; 2018 Jan; 20(5):3128-3140. PubMed ID: 28884175 [TBL] [Abstract][Full Text] [Related]
10. Hydrogenases and H(+)-reduction in primary energy conservation. Vignais PM Results Probl Cell Differ; 2008; 45():223-52. PubMed ID: 18500479 [TBL] [Abstract][Full Text] [Related]
11. Importance of the protein framework for catalytic activity of [FeFe]-hydrogenases. Knörzer P; Silakov A; Foster CE; Armstrong FA; Lubitz W; Happe T J Biol Chem; 2012 Jan; 287(2):1489-99. PubMed ID: 22110126 [TBL] [Abstract][Full Text] [Related]
12. Immobilization of the [FeFe]-hydrogenase CrHydA1 on a gold electrode: design of a catalytic surface for the production of molecular hydrogen. Krassen H; Stripp S; von Abendroth G; Ataka K; Happe T; Heberle J J Biotechnol; 2009 Jun; 142(1):3-9. PubMed ID: 19480942 [TBL] [Abstract][Full Text] [Related]
13. How Formaldehyde Inhibits Hydrogen Evolution by [FeFe]-Hydrogenases: Determination by ¹³C ENDOR of Direct Fe-C Coordination and Order of Electron and Proton Transfers. Bachmeier A; Esselborn J; Hexter SV; Krämer T; Klein K; Happe T; McGrady JE; Myers WK; Armstrong FA J Am Chem Soc; 2015 Apr; 137(16):5381-9. PubMed ID: 25871921 [TBL] [Abstract][Full Text] [Related]
14. Time-Resolved Infrared Spectroscopy Reveals the pH-Independence of the First Electron Transfer Step in the [FeFe] Hydrogenase Catalytic Cycle. Sanchez MLK; Wiley S; Reijerse E; Lubitz W; Birrell JA; Dyer RB J Phys Chem Lett; 2022 Jun; 13(25):5986-5990. PubMed ID: 35736652 [TBL] [Abstract][Full Text] [Related]
15. Chalcogenide substitution in the [2Fe] cluster of [FeFe]-hydrogenases conserves high enzymatic activity. Kertess L; Wittkamp F; Sommer C; Esselborn J; Rüdiger O; Reijerse EJ; Hofmann E; Lubitz W; Winkler M; Happe T; Apfel UP Dalton Trans; 2017 Dec; 46(48):16947-16958. PubMed ID: 29177350 [TBL] [Abstract][Full Text] [Related]
16. Spectroelectrochemical characterization of the active site of the [FeFe] hydrogenase HydA1 from Chlamydomonas reinhardtii. Silakov A; Kamp C; Reijerse E; Happe T; Lubitz W Biochemistry; 2009 Aug; 48(33):7780-6. PubMed ID: 19634879 [TBL] [Abstract][Full Text] [Related]
17. Guiding Principles of Hydrogenase Catalysis Instigated and Clarified by Protein Film Electrochemistry. Armstrong FA; Evans RM; Hexter SV; Murphy BJ; Roessler MM; Wulff P Acc Chem Res; 2016 May; 49(5):884-92. PubMed ID: 27104487 [TBL] [Abstract][Full Text] [Related]
18. Molecular basis of [FeFe]-hydrogenase function: an insight into the complex interplay between protein and catalytic cofactor. Winkler M; Esselborn J; Happe T Biochim Biophys Acta; 2013; 1827(8-9):974-85. PubMed ID: 23507618 [TBL] [Abstract][Full Text] [Related]
19. His-Ligation to the [4Fe-4S] Subcluster Tunes the Catalytic Bias of [FeFe] Hydrogenase. Rodríguez-Maciá P; Kertess L; Burnik J; Birrell JA; Hofmann E; Lubitz W; Happe T; Rüdiger O J Am Chem Soc; 2019 Jan; 141(1):472-481. PubMed ID: 30545220 [TBL] [Abstract][Full Text] [Related]
20. Electrochemical Investigations of the Mechanism of Assembly of the Active-Site H-Cluster of [FeFe]-Hydrogenases. Megarity CF; Esselborn J; Hexter SV; Wittkamp F; Apfel UP; Happe T; Armstrong FA J Am Chem Soc; 2016 Nov; 138(46):15227-15233. PubMed ID: 27776209 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]