These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 28348320)

  • 21. Third generation photovoltaics based on multiple exciton generation in quantum confined semiconductors.
    Beard MC; Luther JM; Semonin OE; Nozik AJ
    Acc Chem Res; 2013 Jun; 46(6):1252-60. PubMed ID: 23113604
    [TBL] [Abstract][Full Text] [Related]  

  • 22. CdS/CdSe quantum dots and ZnPc dye co-sensitized solar cells with Au nanoparticles/graphene oxide as efficient modified layer.
    Chen C; Cheng Y; Jin J; Dai Q; Song H
    J Colloid Interface Sci; 2016 Oct; 480():49-56. PubMed ID: 27399618
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Efficient Infrared-to-Visible Upconversion with Subsolar Irradiance.
    Mahboub M; Huang Z; Tang ML
    Nano Lett; 2016 Nov; 16(11):7169-7175. PubMed ID: 27788577
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Copper-indium-selenide quantum dot-sensitized solar cells.
    Yang J; Kim JY; Yu JH; Ahn TY; Lee H; Choi TS; Kim YW; Joo J; Ko MJ; Hyeon T
    Phys Chem Chem Phys; 2013 Dec; 15(47):20517-25. PubMed ID: 24177572
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Solution processed infrared- and thermo-photovoltaics based on 0.7 eV bandgap PbS colloidal quantum dots.
    Bi Y; Bertran A; Gupta S; Ramiro I; Pradhan S; Christodoulou S; Majji SN; Akgul MZ; Konstantatos G
    Nanoscale; 2019 Jan; 11(3):838-843. PubMed ID: 30574637
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Improving the Power Conversion Efficiency of Carbon Quantum Dot-Sensitized Solar Cells by Growing the Dots on a TiO₂ Photoanode In Situ.
    Zhang Q; Zhang G; Sun X; Yin K; Li H
    Nanomaterials (Basel); 2017 May; 7(6):. PubMed ID: 28561765
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High-efficiency aqueous-processed hybrid solar cells with an enormous Herschel infrared contribution.
    Jin G; Wei HT; Na TY; Sun HZ; Zhang H; Yang B
    ACS Appl Mater Interfaces; 2014 Jun; 6(11):8606-12. PubMed ID: 24809792
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Carbon Dot-Based Composite Films for Simultaneously Harvesting Raindrop Energy and Boosting Solar Energy Conversion Efficiency in Hybrid Cells.
    Wang L; Wang Y; Wang H; Xu G; Döring A; Daoud WA; Xu J; Rogach AL; Xi Y; Zi Y
    ACS Nano; 2020 Aug; 14(8):10359-10369. PubMed ID: 32686934
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Recent advancement in quantum dot-based materials for energy storage applications: a review.
    Anil Kumar Y; Koyyada G; Ramachandran T; Kim JH; Hegazy HH; Singh S; Moniruzzaman M
    Dalton Trans; 2023 Jun; 52(25):8580-8600. PubMed ID: 37096427
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Semiconductor Nanocrystals as Light Harvesters in Solar Cells.
    Etgar L
    Materials (Basel); 2013 Feb; 6(2):445-459. PubMed ID: 28809318
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quantum Dot Donor-Polymer Acceptor Architecture for a FRET-Enabled Solar Cell.
    Kokal RK; Raavi SSK; Deepa M
    ACS Appl Mater Interfaces; 2019 May; 11(20):18395-18403. PubMed ID: 31045337
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Colloidal quantum dot photovoltaics: a path forward.
    Kramer IJ; Sargent EH
    ACS Nano; 2011 Nov; 5(11):8506-14. PubMed ID: 21967723
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nanocrystalline TiO2 solar cells sensitized with InAs quantum dots.
    Yu P; Zhu K; Norman AG; Ferrere S; Frank AJ; Nozik AJ
    J Phys Chem B; 2006 Dec; 110(50):25451-4. PubMed ID: 17165992
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hot-electron transfer in quantum-dot heterojunction films.
    Grimaldi G; Crisp RW; Ten Brinck S; Zapata F; van Ouwendorp M; Renaud N; Kirkwood N; Evers WH; Kinge S; Infante I; Siebbeles LDA; Houtepen AJ
    Nat Commun; 2018 Jun; 9(1):2310. PubMed ID: 29899361
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A strategy to improve the energy conversion efficiency and stability of quantum dot-sensitized solar cells using manganese-doped cadmium sulfide quantum dots.
    Gopi CV; Venkata-Haritha M; Kim SK; Kim HJ
    Dalton Trans; 2015 Jan; 44(2):630-8. PubMed ID: 25381887
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ecofriendly and Efficient Luminescent Solar Concentrators Based on Fluorescent Proteins.
    Sadeghi S; Melikov R; Bahmani Jalali H; Karatum O; Srivastava SB; Conkar D; Firat-Karalar EN; Nizamoglu S
    ACS Appl Mater Interfaces; 2019 Mar; 11(9):8710-8716. PubMed ID: 30777750
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Metal Selenides as Efficient Counter Electrodes for Dye-Sensitized Solar Cells.
    Jin Z; Zhang M; Wang M; Feng C; Wang ZS
    Acc Chem Res; 2017 Apr; 50(4):895-904. PubMed ID: 28282117
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Efficient photocatalytic hydrogen evolution with ligand engineered all-inorganic InP and InP/ZnS colloidal quantum dots.
    Yu S; Fan XB; Wang X; Li J; Zhang Q; Xia A; Wei S; Wu LZ; Zhou Y; Patzke GR
    Nat Commun; 2018 Oct; 9(1):4009. PubMed ID: 30275447
    [TBL] [Abstract][Full Text] [Related]  

  • 39. One-Pot Large-Scale Synthesis of Carbon Quantum Dots: Efficient Cathode Interlayers for Polymer Solar Cells.
    Yang Y; Lin X; Li W; Ou J; Yuan Z; Xie F; Hong W; Yu D; Ma Y; Chi Z; Chen X
    ACS Appl Mater Interfaces; 2017 May; 9(17):14953-14959. PubMed ID: 28395136
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Stable quantum dot photoelectrolysis cell for unassisted visible light solar water splitting.
    Yang HB; Miao J; Hung SF; Huo F; Chen HM; Liu B
    ACS Nano; 2014 Oct; 8(10):10403-13. PubMed ID: 25268880
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.