These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 28348320)

  • 41. Highly efficient solar light-driven photocatalytic hydrogen production over Cu/FCNTs-titania quantum dots-based heterostructures.
    Reddy NR; Bharagav U; Kumari MM; Cheralathan KK; Shankar MV; Reddy KR; Saleh TA; Aminabhavi TM
    J Environ Manage; 2020 Jan; 254():109747. PubMed ID: 31704644
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Multinary I-III-VI2 and I2-II-IV-VI4 Semiconductor Nanostructures for Photocatalytic Applications.
    Regulacio MD; Han MY
    Acc Chem Res; 2016 Mar; 49(3):511-9. PubMed ID: 26864703
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Current status of inorganic solar cells using quantum structures.
    Myong SY
    Recent Pat Nanotechnol; 2012 Jan; 6(1):2-9. PubMed ID: 21871015
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Exciton multiplication and relaxation dynamics in quantum dots: applications to ultrahigh-efficiency solar photon conversion.
    Nozik AJ
    Inorg Chem; 2005 Oct; 44(20):6893-9. PubMed ID: 16180844
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Recent Advances and Challenges in Light Conversion Phosphor Materials for Third-Generation Quantum-Dot-Sensitized Photovoltaics.
    Sekar R; Ravitchandiran A; Angaiah S
    ACS Omega; 2022 Oct; 7(40):35351-35360. PubMed ID: 36249370
    [TBL] [Abstract][Full Text] [Related]  

  • 46. On global energy scenario, dye-sensitized solar cells and the promise of nanotechnology.
    Reddy KG; Deepak TG; Anjusree GS; Thomas S; Vadukumpully S; Subramanian KR; Nair SV; Nair AS
    Phys Chem Chem Phys; 2014 Apr; 16(15):6838-58. PubMed ID: 24603940
    [TBL] [Abstract][Full Text] [Related]  

  • 47. PbS Quantum Dots Sensitized TiO2 Solar Cells Prepared by Successive Ionic Layer Absorption and Reaction with Different Adsorption Layers.
    Yi J; Duan Y; Liu C; Gao S; Han X; An L
    J Nanosci Nanotechnol; 2016 Apr; 16(4):3904-8. PubMed ID: 27451735
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A Rapid and Cost-Effective Laser Based Synthesis of High Purity Cadmium Selenide Quantum Dots.
    Gondall MA; Qahtan TF; Dastageer MA; Yamani ZH; Anjum DH
    J Nanosci Nanotechnol; 2016 Jan; 16(1):867-72. PubMed ID: 27398538
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Nanotechnology for catalysis and solar energy conversion.
    Banin U; Waiskopf N; Hammarström L; Boschloo G; Freitag M; Johansson EMJ; Sá J; Tian H; Johnston MB; Herz LM; Milot RL; Kanatzidis MG; Ke W; Spanopoulos I; Kohlstedt KL; Schatz GC; Lewis N; Meyer T; Nozik AJ; Beard MC; Armstrong F; Megarity CF; Schmuttenmaer CA; Batista VS; Brudvig GW
    Nanotechnology; 2021 Jan; 32(4):042003. PubMed ID: 33155576
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Recent Advances in Solar Thermal Electrochemical Process (STEP) for Carbon Neutral Products and High Value Nanocarbons.
    Ren J; Yu A; Peng P; Lefler M; Li FF; Licht S
    Acc Chem Res; 2019 Nov; 52(11):3177-3187. PubMed ID: 31697061
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Infrared Colloidal Quantum Dot Photovoltaics via Coupling Enhancement and Agglomeration Suppression.
    Ip AH; Kiani A; Kramer IJ; Voznyy O; Movahed HF; Levina L; Adachi MM; Hoogland S; Sargent EH
    ACS Nano; 2015 Sep; 9(9):8833-42. PubMed ID: 26266671
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Theoretical prediction and design for chalcogenide-quantum-dot/TiO
    Shen K; Saranya G; Chen M
    RSC Adv; 2022 Oct; 12(45):29375-29384. PubMed ID: 36320759
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Origin of low sensitizing efficiency of quantum dots in organic solar cells.
    ten Cate S; Schins JM; Siebbeles LD
    ACS Nano; 2012 Oct; 6(10):8983-8. PubMed ID: 22950740
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Organic molecules as tools to control the growth, surface structure, and redox activity of colloidal quantum dots.
    Weiss EA
    Acc Chem Res; 2013 Nov; 46(11):2607-15. PubMed ID: 23734589
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Highly efficient multiple-layer CdS quantum dot sensitized III-V solar cells.
    Lin CC; Han HV; Chen HC; Chen KJ; Tsai YL; Lin WY; Kuo HC; Yu P
    J Nanosci Nanotechnol; 2014 Feb; 14(2):1051-63. PubMed ID: 24749412
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Recent Progress in the Design and Synthesis of Nitrides for Mesoscopic and Perovskite Solar Cells.
    Kang JS; Kang J; Sung YE
    ChemSusChem; 2019 Feb; 12(4):772-786. PubMed ID: 30450843
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Metal oxide semiconductors for dye- and quantum-dot-sensitized solar cells.
    Concina I; Vomiero A
    Small; 2015 Apr; 11(15):1744-74. PubMed ID: 25523717
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Boosting the efficiency of quantum dot sensitized solar cells through modulation of interfacial charge transfer.
    Kamat PV
    Acc Chem Res; 2012 Nov; 45(11):1906-15. PubMed ID: 22493938
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Recent advancement on quantum dot-coupled heterojunction structures in catalysis:A review.
    Yu W; Chamkouri H; Chen L
    Chemosphere; 2024 Jun; 357():141944. PubMed ID: 38614402
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Research progress of perovskite materials in photocatalysis- and photovoltaics-related energy conversion and environmental treatment.
    Wang W; Tadé MO; Shao Z
    Chem Soc Rev; 2015 Aug; 44(15):5371-408. PubMed ID: 25976276
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.