These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 28348342)

  • 61. Performance of a Low Energy Ion Source with Carbon Nanotube Electron Emitters under the Influence of Various Operating Gases.
    Zhang H; Li D; Wurz P; Etter A; Cheng Y; Dong C; Huang W
    Nanomaterials (Basel); 2020 Feb; 10(2):. PubMed ID: 32085559
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Improvement of field emission performances by DMSO and PEDOT:PSS treated freestanding CNT clusters.
    Liu JA; Wang J; Cheraghi E; Chen S; Sun Y; Yeow JTW
    Nanoscale; 2022 Oct; 14(41):15364-15372. PubMed ID: 36218079
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Well-aligned open-ended carbon nanotube architectures: an approach for device assembly.
    Zhu L; Sun Y; Hess DW; Wong CP
    Nano Lett; 2006 Feb; 6(2):243-7. PubMed ID: 16464043
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Highly Oriented Direct-Spun Carbon Nanotube Textiles Aligned by In Situ Radio-Frequency Fields.
    Issman L; Kloza PA; Terrones Portas J; Collins B; Pendashteh A; Pick M; Vilatela JJ; Elliott JA; Boies A
    ACS Nano; 2022 Jun; 16(6):9583-9597. PubMed ID: 35638849
    [TBL] [Abstract][Full Text] [Related]  

  • 65. A novel field emission microscopy method to study field emission characteristics of freestanding carbon nanotube arrays.
    Li Y; Sun Y; Jaffray DA; Yeow JT
    Nanotechnology; 2017 Apr; 28(15):155704. PubMed ID: 28211793
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Residual Gas Adsorption and Desorption in the Field Emission of Titanium-Coated Carbon Nanotubes.
    Zhang H; Li D; Wurz P; Cheng Y; Wang Y; Wang C; Sun J; Li G; Fausch RG
    Materials (Basel); 2019 Sep; 12(18):. PubMed ID: 31514335
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Stable electron field emission from PMMA-CNT matrices.
    Pandey A; Prasad A; Moscatello JP; Yap YK
    ACS Nano; 2010 Nov; 4(11):6760-6. PubMed ID: 20954697
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Carbon nanotube electron field emitters for x-ray imaging of human breast cancer.
    Gidcumb E; Gao B; Shan J; Inscoe C; Lu J; Zhou O
    Nanotechnology; 2014 Jun; 25(24):245704. PubMed ID: 24869902
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Controlled growth of carbon nanotube-graphene hybrid materials for flexible and transparent conductors and electron field emitters.
    Nguyen DD; Tai NH; Chen SY; Chueh YL
    Nanoscale; 2012 Jan; 4(2):632-8. PubMed ID: 22147118
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Enhanced field emission of WSâ‚‚ nanotubes.
    Viskadouros G; Zak A; Stylianakis M; Kymakis E; Tenne R; Stratakis E
    Small; 2014 Jun; 10(12):2398-403. PubMed ID: 24610733
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Effects of Al interlayer coating and thermal treatment on electron emission characteristics of carbon nanotubes deposited by electrophoretic method.
    Kim BJ; Kim JP; Park JS
    Nanoscale Res Lett; 2014; 9(1):236. PubMed ID: 24959105
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Metal-modified and vertically aligned carbon nanotube sensors array for landfill gas monitoring applications.
    Penza M; Rossi R; Alvisi M; Serra E
    Nanotechnology; 2010 Mar; 21(10):105501. PubMed ID: 20154374
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Enhanced field emission properties of carbon nanotube bundles confined in SiO
    Lim YD; Grapov D; Hu L; Kong Q; Tay BK; Labunov V; Miao J; Coquet P; Aditya S
    Nanotechnology; 2018 Feb; 29(7):075205. PubMed ID: 29239308
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Carbon nanotube electron ionization source for portable mass spectrometry.
    Evans-Nguyen T; Parker CB; Hammock C; Monica AH; Adams E; Becker L; Glass JT; Cotter RJ
    Anal Chem; 2011 Sep; 83(17):6527-31. PubMed ID: 21718010
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Carbon nanotube-tungsten nanowire hierarchical structure for augmented field emission performance.
    Pulagara NV; Lahiri I
    Nanotechnology; 2022 May; 33(30):. PubMed ID: 35395656
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Electron transfer from a carbon nanotube into vacuum under high electric fields.
    Filip LD; Smith RC; Carey JD; Silva SR
    J Phys Condens Matter; 2009 May; 21(19):195302. PubMed ID: 21825476
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Improved field emission performance of carbon nanotube by introducing copper metallic particles.
    Chen Y; Jiang H; Li D; Song H; Li Z; Sun X; Miao G; Zhao H
    Nanoscale Res Lett; 2011 Oct; 6(1):537. PubMed ID: 21968066
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Quasi-ballistic carbon nanotube array transistors with current density exceeding Si and GaAs.
    Brady GJ; Way AJ; Safron NS; Evensen HT; Gopalan P; Arnold MS
    Sci Adv; 2016 Sep; 2(9):e1601240. PubMed ID: 27617293
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Investigation of Field Emission Properties of Carbon Nanotube Arrays of Different Morphologies.
    Chumak MA; Shchegolkov AV; Popov EO; Filippov SV; Kolosko AG; Shchegolkov AV; Babaev AA
    Nanomaterials (Basel); 2024 Apr; 14(9):. PubMed ID: 38727357
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Improving the field emission from carbon nanotubes through chemical functionalisation: a quantifiable approach.
    Carey JD
    J Nanosci Nanotechnol; 2009 Nov; 9(11):6538-41. PubMed ID: 19908561
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.