These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 28348530)

  • 1. Paradigm Shifts in Voluntary Force Control and Motor Unit Behaviors with the Manipulated Size of Visual Error Perception.
    Chen YC; Lin YT; Chang GC; Hwang IS
    Front Physiol; 2017; 8():140. PubMed ID: 28348530
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alterations in Neural Control of Constant Isometric Contraction with the Size of Error Feedback.
    Hwang IS; Lin YT; Huang WM; Yang ZR; Hu CL; Chen YC
    PLoS One; 2017; 12(1):e0170824. PubMed ID: 28125658
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Variations in Static Force Control and Motor Unit Behavior with Error Amplification Feedback in the Elderly.
    Chen YC; Lin LL; Lin YT; Hu CL; Hwang IS
    Front Hum Neurosci; 2017; 11():538. PubMed ID: 29167637
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving Precision Force Control With Low-Frequency Error Amplification Feedback: Behavioral and Neurophysiological Mechanisms.
    Hwang IS; Hu CL; Yang ZR; Lin YT; Chen YC
    Front Physiol; 2019; 10():131. PubMed ID: 30842742
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of visuospatial resolution on discharge variability among motor units and force-discharge relation.
    Chen YC; Shih CL; Lin YT; Hwang IS
    Chin J Physiol; 2019; 62(4):166-174. PubMed ID: 31535632
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Perceptual influences of error size on voluntary force control during a compound sinusoidal force task.
    Chen YC; Lin YT; Chang GC; Hwang IS
    Hum Mov Sci; 2017 Dec; 56(Pt B):46-53. PubMed ID: 29101823
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Failure to improve task performance after visuomotor training with error reduction feedback for young adults.
    Lin YT; Chen YC; Chang GC; Hwang IS
    Front Physiol; 2023; 14():1066325. PubMed ID: 36969593
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coherence of EMG activity and single motor unit discharge patterns in human rhythmical force production.
    Sosnoff JJ; Vaillancourt DE; Larsson L; Newell KM
    Behav Brain Res; 2005 Mar; 158(2):301-10. PubMed ID: 15698897
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of exercise and training on motor unit activation.
    Sale DG
    Exerc Sport Sci Rev; 1987; 15():95-151. PubMed ID: 3297731
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neuromuscular mechanisms and neural strategies in the control of time-varying muscle contractions.
    Erimaki S; Agapaki OM; Christakos CN
    J Neurophysiol; 2013 Sep; 110(6):1404-14. PubMed ID: 23803326
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tracking changes in spatial frequency sensitivity during natural image processing in school age: an event-related potential study.
    Rokszin AA; Győri-Dani D; Bácsi J; Nyúl LG; Csifcsák G
    J Exp Child Psychol; 2018 Feb; 166():664-678. PubMed ID: 29128609
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Task-related changes in sensorimotor integration influence the common synaptic input to motor neurones.
    Laine CM; Yavuz SU; Farina D
    Acta Physiol (Oxf); 2014 May; 211(1):229-39. PubMed ID: 24620727
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potential Motor Benefits of Visual Feedback of Error Reduction for Older Adults.
    Hwang IS; Hu CL; Huang WM; Tsai YY; Chen YC
    J Aging Phys Act; 2020 Dec; 28(6):934-942. PubMed ID: 32702665
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improvements in force variability and structure from vision- to memory-guided submaximal isometric knee extension in subacute stroke.
    Chow JW; Stokic DS
    J Appl Physiol (1985); 2018 Mar; 124(3):592-603. PubMed ID: 29097632
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robust estimation of average twitch contraction forces of populations of motor units in humans.
    Negro F; Orizio C
    J Electromyogr Kinesiol; 2017 Dec; 37():132-140. PubMed ID: 29101911
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long-range correlations in motor unit discharge times at low forces are modulated by visual gain and age.
    Jordan K; Jesunathadas M; Sarchet DM; Enoka RM
    Exp Physiol; 2013 Feb; 98(2):546-55. PubMed ID: 22983995
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-motor-unit discharge characteristics in human lumbar multifidus muscle.
    Lothe LR; Raven TJ; Eken T
    J Neurophysiol; 2015 Aug; 114(2):1286-97. PubMed ID: 26084900
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discharge rate variability influences the variation in force fluctuations across the working range of a hand muscle.
    Moritz CT; Barry BK; Pascoe MA; Enoka RM
    J Neurophysiol; 2005 May; 93(5):2449-59. PubMed ID: 15615827
    [TBL] [Abstract][Full Text] [Related]  

  • 19. You are as fast as your motor neurons: speed of recruitment and maximal discharge of motor neurons determine the maximal rate of force development in humans.
    Del Vecchio A; Negro F; Holobar A; Casolo A; Folland JP; Felici F; Farina D
    J Physiol; 2019 May; 597(9):2445-2456. PubMed ID: 30768687
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time-dependent structure in the discharge rate of human motor units.
    Vaillancourt DE; Larsson L; Newell KM
    Clin Neurophysiol; 2002 Aug; 113(8):1325-38. PubMed ID: 12140014
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.