These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 28348874)

  • 21. A pipeline for completing bacterial genomes using in silico and wet lab approaches.
    Puranik R; Quan G; Werner J; Zhou R; Xu Z
    BMC Genomics; 2015; 16 Suppl 3(Suppl 3):S7. PubMed ID: 25708162
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A De-Novo Genome Analysis Pipeline (DeNoGAP) for large-scale comparative prokaryotic genomics studies.
    Thakur S; Guttman DS
    BMC Bioinformatics; 2016 Jun; 17(1):260. PubMed ID: 27363390
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evaluating the efficacy of the new Ion PGM Hi-Q Sequencing Kit applied to bacterial genomes.
    Pereira FL; Soares SC; Dorella FA; Leal CA; Figueiredo HC
    Genomics; 2016 May; 107(5):189-98. PubMed ID: 27033417
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fast Short Read De-Novo Assembly Using Overlap-Layout-Consensus Approach.
    Bayat A; Deshpande NP; Wilkins MR; Parameswaran S
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(1):334-338. PubMed ID: 30307874
    [TBL] [Abstract][Full Text] [Related]  

  • 25. GABenchToB: a genome assembly benchmark tuned on bacteria and benchtop sequencers.
    Jünemann S; Prior K; Albersmeier A; Albaum S; Kalinowski J; Goesmann A; Stoye J; Harmsen D
    PLoS One; 2014; 9(9):e107014. PubMed ID: 25198770
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Benchmarking of de novo assembly algorithms for Nanopore data reveals optimal performance of OLC approaches.
    Cherukuri Y; Janga SC
    BMC Genomics; 2016 Aug; 17 Suppl 7(Suppl 7):507. PubMed ID: 27556636
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A combined de novo assembly approach increases the quality of prokaryotic draft genomes.
    Çabuk U; Ünlü ES
    Folia Microbiol (Praha); 2022 Oct; 67(5):801-810. PubMed ID: 35668290
    [TBL] [Abstract][Full Text] [Related]  

  • 28. aTRAM - automated target restricted assembly method: a fast method for assembling loci across divergent taxa from next-generation sequencing data.
    Allen JM; Huang DI; Cronk QC; Johnson KP
    BMC Bioinformatics; 2015 Mar; 16(1):98. PubMed ID: 25887972
    [TBL] [Abstract][Full Text] [Related]  

  • 29. TORMES: an automated pipeline for whole bacterial genome analysis.
    Quijada NM; Rodríguez-Lázaro D; Eiros JM; Hernández M
    Bioinformatics; 2019 Nov; 35(21):4207-4212. PubMed ID: 30957837
    [TBL] [Abstract][Full Text] [Related]  

  • 30. SASpector: analysis of missing genomic regions in draft genomes of prokaryotes.
    Lood C; Correa Rojo A; Sinar D; Verkinderen E; Lavigne R; Noort VV
    Bioinformatics; 2022 May; 38(10):2920-2921. PubMed ID: 35561201
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparison of R9.4.1/Kit10 and R10/Kit12 Oxford Nanopore flowcells and chemistries in bacterial genome reconstruction.
    Sanderson ND; Kapel N; Rodger G; Webster H; Lipworth S; Street TL; Peto T; Crook D; Stoesser N
    Microb Genom; 2023 Jan; 9(1):. PubMed ID: 36748454
    [TBL] [Abstract][Full Text] [Related]  

  • 32. HaploMerger2: rebuilding both haploid sub-assemblies from high-heterozygosity diploid genome assembly.
    Huang S; Kang M; Xu A
    Bioinformatics; 2017 Aug; 33(16):2577-2579. PubMed ID: 28407147
    [TBL] [Abstract][Full Text] [Related]  

  • 33. De novo assembly of Dekkera bruxellensis: a multi technology approach using short and long-read sequencing and optical mapping.
    Olsen RA; Bunikis I; Tiukova I; Holmberg K; Lötstedt B; Pettersson OV; Passoth V; Käller M; Vezzi F
    Gigascience; 2015; 4():56. PubMed ID: 26617983
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Common workflow language (CWL)-based software pipeline for de novo genome assembly from long- and short-read data.
    Korhonen PK; Hall RS; Young ND; Gasser RB
    Gigascience; 2019 Apr; 8(4):. PubMed ID: 30821816
    [TBL] [Abstract][Full Text] [Related]  

  • 35. ISQuest: finding insertion sequences in prokaryotic sequence fragment data.
    Biswas A; Gauthier DT; Ranjan D; Zubair M
    Bioinformatics; 2015 Nov; 31(21):3406-12. PubMed ID: 26116929
    [TBL] [Abstract][Full Text] [Related]  

  • 36. ntLink: A Toolkit for De Novo Genome Assembly Scaffolding and Mapping Using Long Reads.
    Coombe L; Warren RL; Wong J; Nikolic V; Birol I
    Curr Protoc; 2023 Apr; 3(4):e733. PubMed ID: 37039735
    [TBL] [Abstract][Full Text] [Related]  

  • 37. riboSeed: leveraging prokaryotic genomic architecture to assemble across ribosomal regions.
    Waters NR; Abram F; Brennan F; Holmes A; Pritchard L
    Nucleic Acids Res; 2018 Jun; 46(11):e68. PubMed ID: 29608703
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ragout-a reference-assisted assembly tool for bacterial genomes.
    Kolmogorov M; Raney B; Paten B; Pham S
    Bioinformatics; 2014 Jun; 30(12):i302-9. PubMed ID: 24931998
    [TBL] [Abstract][Full Text] [Related]  

  • 39. GFinisher: a new strategy to refine and finish bacterial genome assemblies.
    Guizelini D; Raittz RT; Cruz LM; Souza EM; Steffens MB; Pedrosa FO
    Sci Rep; 2016 Oct; 6():34963. PubMed ID: 27721396
    [TBL] [Abstract][Full Text] [Related]  

  • 40. GenAPI: a tool for gene absence-presence identification in fragmented bacterial genome sequences.
    Gabrielaite M; Marvig RL
    BMC Bioinformatics; 2020 Jul; 21(1):320. PubMed ID: 32690023
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.