BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

376 related articles for article (PubMed ID: 28349140)

  • 21. Chamber and microfluidic probe for microperfusion of organotypic brain slices.
    Queval A; Ghattamaneni NR; Perrault CM; Gill R; Mirzaei M; McKinney RA; Juncker D
    Lab Chip; 2010 Feb; 10(3):326-34. PubMed ID: 20091004
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A multichannel neural probe with embedded microfluidic channels for simultaneous in vivo neural recording and drug delivery.
    Lee HJ; Son Y; Kim J; Lee CJ; Yoon ES; Cho IJ
    Lab Chip; 2015 Mar; 15(6):1590-7. PubMed ID: 25651943
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Applications of microfluidics for neuronal studies.
    Gross PG; Kartalov EP; Scherer A; Weiner LP
    J Neurol Sci; 2007 Jan; 252(2):135-43. PubMed ID: 17207502
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dynamic control of extracellular environment in in vitro neural recording systems.
    Pearce TM; Williams JJ; Kruzel SP; Gidden MJ; Williams JC
    IEEE Trans Neural Syst Rehabil Eng; 2005 Jun; 13(2):207-12. PubMed ID: 16003901
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recent advances in neural dust: towards a neural interface platform.
    Neely RM; Piech DK; Santacruz SR; Maharbiz MM; Carmena JM
    Curr Opin Neurobiol; 2018 Jun; 50():64-71. PubMed ID: 29331738
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Multifunctional multi-shank neural probe for investigating and modulating long-range neural circuits in vivo.
    Shin H; Son Y; Chae U; Kim J; Choi N; Lee HJ; Woo J; Cho Y; Yang SH; Lee CJ; Cho IJ
    Nat Commun; 2019 Aug; 10(1):3777. PubMed ID: 31439845
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Battery-free, lightweight, injectable microsystem for in vivo wireless pharmacology and optogenetics.
    Zhang Y; Castro DC; Han Y; Wu Y; Guo H; Weng Z; Xue Y; Ausra J; Wang X; Li R; Wu G; Vázquez-Guardado A; Xie Y; Xie Z; Ostojich D; Peng D; Sun R; Wang B; Yu Y; Leshock JP; Qu S; Su CJ; Shen W; Hang T; Banks A; Huang Y; Radulovic J; Gutruf P; Bruchas MR; Rogers JA
    Proc Natl Acad Sci U S A; 2019 Oct; 116(43):21427-21437. PubMed ID: 31601737
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An Electrocorticography Device with an Integrated Microfluidic Ion Pump for Simultaneous Neural Recording and Electrophoretic Drug Delivery In Vivo.
    Proctor CM; Uguz I; Slezia A; Curto V; Inal S; Williamson A; Malliaras GG
    Adv Biosyst; 2019 Feb; 3(2):e1800270. PubMed ID: 32627377
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Advances in microfluidics-based experimental methods for neuroscience research.
    Park JW; Kim HJ; Kang MW; Jeon NL
    Lab Chip; 2013 Feb; 13(4):509-21. PubMed ID: 23306275
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optogenetics in neural systems.
    Yizhar O; Fenno LE; Davidson TJ; Mogri M; Deisseroth K
    Neuron; 2011 Jul; 71(1):9-34. PubMed ID: 21745635
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Future of Neuroscience: Flexible and Wireless Implantable Neural Electronics.
    McGlynn E; Nabaei V; Ren E; Galeote-Checa G; Das R; Curia G; Heidari H
    Adv Sci (Weinh); 2021 May; 8(10):2002693. PubMed ID: 34026431
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development of a microfluidic platform with integrated power splitting waveguides for optogenetic neural cell stimulation.
    Feng H; Shu W; Chen X; Zhang Y; Lu Y; Wang L; Chen Y
    Biomed Microdevices; 2015 Oct; 17(5):101. PubMed ID: 26371060
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Review: Research Progress of Neural Probes for Brain Research and Brain-Computer Interface.
    Luo J; Xue N; Chen J
    Biosensors (Basel); 2022 Dec; 12(12):. PubMed ID: 36551135
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Implantable optoelectronic probes for in vivo optogenetics.
    Iseri E; Kuzum D
    J Neural Eng; 2017 Jun; 14(3):031001. PubMed ID: 28198703
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Constraining the connectivity of neuronal networks cultured on microelectrode arrays with microfluidic techniques: a step towards neuron-based functional chips.
    Morin F; Nishimura N; Griscom L; Lepioufle B; Fujita H; Takamura Y; Tamiya E
    Biosens Bioelectron; 2006 Jan; 21(7):1093-100. PubMed ID: 15961304
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Integrated device for combined optical neuromodulation and electrical recording for chronic in vivo applications.
    Wang J; Wagner F; Borton DA; Zhang J; Ozden I; Burwell RD; Nurmikko AV; van Wagenen R; Diester I; Deisseroth K
    J Neural Eng; 2012 Feb; 9(1):016001. PubMed ID: 22156042
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Centrifugal microfluidics for biomedical applications.
    Gorkin R; Park J; Siegrist J; Amasia M; Lee BS; Park JM; Kim J; Kim H; Madou M; Cho YK
    Lab Chip; 2010 Jul; 10(14):1758-73. PubMed ID: 20512178
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Customizable, wireless and implantable neural probe design and fabrication via 3D printing.
    Parker KE; Lee J; Kim JR; Kawakami C; Kim CY; Qazi R; Jang KI; Jeong JW; McCall JG
    Nat Protoc; 2023 Jan; 18(1):3-21. PubMed ID: 36271159
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Miniaturized optogenetic neural implants: a review.
    Fan B; Li W
    Lab Chip; 2015 Oct; 15(19):3838-55. PubMed ID: 26308721
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Neural probes--microsystems to interface with the brain.
    Stieglitz T; Neves H; Ruther P
    Biomed Tech (Berl); 2014 Aug; 59(4):269-71. PubMed ID: 25153207
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.